66 resultados para modello @ppZTL android QR-Code GPS NFC
Resumo:
A new technique based on adaptive code-to-user allocation for interference management on the downlink of BPSK based TDD DS-CDMA systems is presented. The principle of the proposed technique is to exploit the dependency of multiple access interference on the instantaneous symbol values of the active users. The objective is to adaptively allocate the available spreading sequences to users on a symbol-by-symbol basis to optimize the decision variables at the downlink receivers. The presented simulations show an overall system BER performance improvement of more than an order of a magnitude with the proposed technique while the adaptation overhead is kept less than 10% of the available bandwidth.
Resumo:
This paper proposes a hybrid transmission technique based on adaptive code-to-user allocation and linear precoding for the downlink of phase shift keying (PSK) based multi-carrier code division multiple access (MC-CDMA) systems. The proposed scheme is based on the separation of the instantaneous multiple access interference (MAI) into constructive and destructive components taking into account the dependency on both the channel variation and the instantaneous symbol values of the active users. The first stage of the proposed technique is to adaptively distribute the available spreading sequences to the users on a symbol-by-symbol basis in the form of codehopping with the objective to steer the users' instantaneous crosscorrelations to yield a favourable constructive to destructive MAI ratio. The second stage is to employ a partial transmitter based zero forcing (ZF) scheme specifically designed for the exploitation of constructive MAI. The partial ZF processing decorrelates destructive interferers, while users that interfere constructively remain correlated. This results in a signal to interference-plus-noise ratio (SINR) enhancement without the need for additional power-per-user investment. It will be shown in the results section that significant bit error rate (BER) performance benefits can be achieved with this technique.
Resumo:
Nowadays few people consider finding their way in unfamiliar areas a problem as a GPS (Global Positioning System) combined with some simple map software can easily tell you how to get from A to B. Although this opportunity has only become available during the last decade, recent experiments show that long-distance migrating animals had already solved this problem. Even after displacement over thousands of kilometres to previously unknown areas, experienced but not first time migrant birds quickly adjust their course toward their destination, proving the existence of an experience-based GPS in these birds. Determining latitude is a relatively simple task, even for humans, whereas longitude poses much larger problems. Birds and other animals however have found a way to achieve this, although we do not yet know how. Possible ways of determining longitude includes using celestial cues in combination with an internal clock, geomagnetic cues such as magnetic intensity or perhaps even olfactory cues. Presently, there is not enough evidence to rule out any of these, and years of studying birds in a laboratory setting have yielded partly contradictory results. We suggest that a concerted effort, where the study of animals in a natural setting goes hand-in-hand with lab-based study, may be necessary to fully understand the mechanism underlying the long-distance navigation system of birds. As such, researchers must remain receptive to alternative interpretations and bear in mind that animal navigation may not necessarily be similar to the human system, and that we know from many years of investigation of long-distance navigation in birds that at least some birds do have a GPS-but we are uncertain how it works.
Resumo:
The use of barcode technology to capture data on pharmacists' clinical interventions is described.
Resumo:
Recent experiments using Terawatt lasers to accelerate protons deposited on thin wire targets are modeled with a new type of gridless plasma simulation code. In contrast to conventional mesh-based methods, this technique offers a unique capability in emulating the complex geometry and open-ended boundary conditions characteristic of contemporary experimental conditions. Comparisons of ion acceleration are made between the tree code and standard particle-in-cell simulations for a typical collisionless
Resumo:
To test the hypothesis that more disadvantaged patients are perceived by general practitioners (GPs) as being less attractive than their more affluent peers.
Resumo:
A new approach to spectroscopy of laser induced proton beams using radiochromic film (RCF) is presented. This approach allows primary standards of absorbed dose-to-water as used in radiotherapy to be transferred to the calibration of GafChromic HD-810 and EBT in a 29 MeV proton beam from the Birmingham cyclotron. These films were then irradiated in a common stack configuration using the TARANIS Nd:Glass multi-terawatt laser at Queens University Belfast, which can accelerate protons to 10-12 MeV, and a depth-dose curve was measured from a collimated beam. Previous work characterizing the relative effectiveness (RE) of GafChromic film as a function of energy was implemented into Monte Carlo depth-dose curves using FLUKA. A Bragg peak (BP) "library" for proton energies 0-15 MeV was generated, both with and without the RE function. These depth-response curves were iteratively summed in a FORTRAN routine to solve for the measured RCF depth-dose using a simple direct search algorithm. By comparing resultant spectra with both BP libraries, it was found that the effect of including the RE function accounted for an increase in the total number of protons by about 50%. To account for the energy loss due to a 20 mu m aluminum filter in front of the film stack, FLUKA was used to create a matrix containing the energy loss transformations for each individual energy bin. Multiplication by the pseudo-inverse of this matrix resulted in "up-shifting" protons to higher energies. Applying this correction to two laser shots gave further increases in the total number of protons, N of 31% and 56%. Failure to consider the relative response of RCF to lower proton energies and neglecting energy losses in a stack filter foil can potentially lead to significant underestimates of the total number of protons in RCF spectroscopy of the low energy protons produced by laser ablation of thin targets.
Resumo:
A scheduling method for implementing a generic linear QR array processor architecture is presented. This improves on previous work. It also considerably simplifies the derivation of schedules for a folded linear system, where detailed account has to be taken of processor cell latency. The architecture and scheduling derived provide the basis of a generator for the rapid design of System-on-a-Chip (SoC) cores for QR decomposition.