57 resultados para low power electronics
Resumo:
Because of their extraordinary structural and electrical properties, two dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (~38) and small static power (Pico-Watts), paving the way for low power electronic system in 2D materials.
Resumo:
Power dissipation and tolerance to process variations pose conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor up-sizing for process tolerance can be detrimental for power dissipation. However, for certain signal processing systems such as those used in color image processing, we noted that effective trade-offs can be achieved between Vdd scaling, process tolerance and "output quality". In this paper we demonstrate how these tradeoffs can be effectively utilized in the development of novel low-power variation tolerant architectures for color interpolation. The proposed architecture supports a graceful degradation in the PSNR (Peak Signal to Noise Ratio) under aggressive voltage scaling as well as extreme process variations in. sub-70nm technologies. This is achieved by exploiting the fact that some computations are more important and contribute more to the PSNR improvement compared to the others. The computations are mapped to the hardware in such a way that only the less important computations are affected by Vdd-scaling and process variations. Simulation results show that even at a scaled voltage of 60% of nominal Vdd value, our design provides reasonable image PSNR with 69% power savings.
Resumo:
Low-power processors and accelerators that were originally designed for the embedded systems market are emerging as building blocks for servers. Power capping has been actively explored as a technique to reduce the energy footprint of high-performance processors. The opportunities and limitations of power capping on the new low-power processor and accelerator ecosystem are less understood. This paper presents an efficient power capping and management infrastructure for heterogeneous SoCs based on hybrid ARM/FPGA designs. The infrastructure coordinates dynamic voltage and frequency scaling with task allocation on a customised Linux system for the Xilinx Zynq SoC. We present a compiler-assisted power model to guide voltage and frequency scaling, in conjunction with workload allocation between the ARM cores and the FPGA, under given power caps. The model achieves less than 5% estimation bias to mean power consumption. In an FFT case study, the proposed power capping schemes achieve on average 97.5% of the performance of the optimal execution and match the optimal execution in 87.5% of the cases, while always meeting power constraints.
Resumo:
The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we analyze the enormous potential of engineering source/drain extension (SDE) regions in FinFETs for ultra-low-voltage (ULV) analog applications. SDE region design can simultaneously improve two key analog figures of merit (FOM)-intrinsic de gain (A(vo)) and cutoff frequency (f(T)) for 60 and 30 nm FinFETs operated at low drive current (J(ds) = 5 mu A/mu m). The improved Avo and fT are nearly twice compared to those of devices with abrupt SDE regions. The influence of the SDE region profile and its impact on analog FOM is extensively analyzed. Results show that SDE region optimization provides an additional degree of freedom apart from device parameters (fin width and aspect ratio) to design future nanoscale analog devices. The results are analyzed in terms of spacer-to-straggle ratio a new design parameter for SDE engineered devices. This paper provides new opportunities for realizing future ULV/low-power analog design with FinFETs.
Resumo:
In this letter, we propose a novel design methodology for engineering source/drain extension (SDE) regions to simultaneously improve intrinsic dc gain (A(vo)) and cutoff frequency (f(T)) of 25-nm gate-length FinFETs operated at low drain-current (I-ds = 10 mu A/mu m). SDE region optimization in 25-nm FinFETs results in exceptionally high values of Avo (similar to 45 dB) and f(T) (similar to 70 GHz), which is nearly 2.5 times greater when compared to devices designed with abrupt SDE regions. The influence of spacer width, lateral source/drain doping gradient, and the spacer-to-gradient ratio on key analog figures of merit is examined in detail. This letter provides new opportunities for realizing future low-voltage/low-power analog design with nanoscale SDE-engineered FinFETs.
Resumo:
A power and resource efficient ‘dynamic-range utilisation’ technique to increase operational capacity of DSP IP cores by exploiting redundancy in the data epresentation of sampled analogue input data, is presented. By cleverly partitioning dynamic-range into separable processing threads, several data streams are computed concurrently on the same hardware. Unlike existing techniques which act solely to reduce power consumption due to sign extension, here the dynamic range is exploited to increase operational capacity while still achieving reduced power consumption. This extends an existing system-level, power efficient framework for the design of low power DSP IP cores, which when applied to the design of an FFT IP core in a digital receiver system gives an architecture requiring 50% fewer multipliers, 12% fewer slices and 51%-56% less power.
Resumo:
Exploiting the underutilisation of variable-length DSP algorithms during normal operation is vital, when seeking to maximise the achievable functionality of an application within peak power budget. A system level, low power design methodology for FPGA-based, variable length DSP IP cores is presented. Algorithmic commonality is identified and resources mapped with a configurable datapath, to increase achievable functionality. It is applied to a digital receiver application where a 100% increase in operational capacity is achieved in certain modes without significant power or area budget increases. Measured results show resulting architectures requires 19% less peak power, 33% fewer multipliers and 12% fewer slices than existing architectures.
Resumo:
All-optical signal processing enables modulation and transmission speeds not achievable using electronics alone(1,2). However, its practical applications are limited by the inherently weak nonlinear effects that govern photon-photon interactions in conventional materials, particularly at high switching rates(3). Here, we show that the recently discovered nonlocal optical behaviour of plasmonic nanorod metamaterials(4) enables an enhanced, ultrafast, nonlinear optical response. We observe a large (80%) change of transmission through a subwavelength thick slab of metamaterial subjected to a low control light fluence of 7 mJ cm(-2), with switching frequencies in the terahertz range. We show that both the response time and the nonlinearity can be engineered by appropriate design of the metamaterial nanostructure. The use of nonlocality to enhance the nonlinear optical response of metamaterials, demonstrated here in plasmonic nanorod composites, could lead to ultrafast, low-power all-optical information processing in subwavelength-scale devices.
Resumo:
Email
Print
Request Permissions
A compact V-band active power detector using Infineon 0.35 µm SiGe HBT process (fT/fmax =170/250 GHz) is described. The total chip area is only 0.35×0.8 mm2 including all pads. This design exhibits a dynamic range larger than 20 dB over the frequency range from 55 GHz to 67 GHz. It also offers a simple and low-power application potential as an envelop detector in multi-Gbps high data rate demodulators for OOK/ASK etc.
Resumo:
In this work, we demonstrate a very high-energy density and high-temperature stability capacitor based on SrTiO3-substituted BiFeO3 thin films. An energy density of 18.6 J/cm3 at 972 kV/cm is reported. The temperature coefficient of capacitance (TCC) was below 11% from room temperature up to 200°C. These results are of practical importance, because it puts forward a promising novel and environmentally friendly, lead-free material, for high-temperature applications in power electronics up to 200°C. Applications include capacitors for low carbon vehicles, renewable energy technologies, integrated circuits, and for the high-temperature aerospace sector. © 2013 Crown copyright
Resumo:
Due to the intermittent nature of renewable generation it is desirable to consider the potential of controlling the demand-side load to smooth overall system demand. The architecture and control methodologies of such a system on a large scale would require careful consideration. Some of these considerations are discussed in this paper; such as communications infrastructure, systems architecture, control methodologies and security. A domestic fridge is used in this paper as an example of a controllable appliance. A layered approach to smart-grid is introduced and it can be observed how each smart-grid component from physical cables, to the end-devices (or smart-applications) can be mapped to these set layers. It is clear how security plays an integral part in each component of the smart-grid so this is also an integral part of each layer. The controllable fridge is described in detail and as one potential smart-grid application which maps to the layered approach. A demonstration system is presented which involves a Raspberry Pi (a low-power, low-cost device representing the appliance controller).
Resumo:
Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.
Resumo:
As a post-CMOS technology, the incipient Quantum-dot Cellular Automata technology has various advantages. A key aspect which makes it highly desirable is low power dissipation. One method that is used to analyse power dissipation in QCA circuits is bit erasure analysis. This method has been applied to analyse previously proposed QCA binary adders. However, a number of improved QCA adders have been proposed more recently that have only been evaluated in terms of area and speed. As the three key performance metrics for QCA circuits are speed, area and power, in this paper, a bit erasure analysis of these adders will be presented to determine their power dissipation. The adders to be analysed are the Carry Flow Adder (CFA), Brent-Kung Adder (B-K), Ladner-Fischer Adder (L-F) and a more recently developed area-delay efficient adder. This research will allow for a more comprehensive comparison between the different QCA adder proposals. To the best of the authors' knowledge, this is the first time power dissipation analysis has been carried out on these adders.