40 resultados para infrared spectroscopy,


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Milling of plant and soil material in plastic tubes, such as microcentrifuge tubes, over-estimates carbon (C) and under-estimates nitrogen (N) concentrations due to the introduction of polypropylene into milled samples, as identified using Fourier-transform infra-red spectroscopy.

This study compares C and N concentrations of roots and soil milled in microcentrifuge tubes versus stainless steel containers, demonstrating that a longer milling time, greater milling intensity, smaller sample size and inclusion of abrasive sample material all increase polypropylene contamination from plastic tubes leading to overestimation of C concentrations by up to 8 % (0.08 g g(-1)).

Erroneous estimations of C and N, and other analytes, must be assumed after milling in plastic tubes and milling methods should be adapted to minimise such error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New Findings

What is the central question of this study?Exercise performance is limited during hypoxia by a critical reduction in cerebral and skeletal tissue oxygenation. To what extent an elevation in systemic free radical accumulation contributes to microvascular deoxygenation and the corresponding reduction in maximal aerobic capacity remains unknown.What is the main finding and its importance?We show that altered free radical metabolism is not a limiting factor for exercise performance in hypoxia, providing important insight into the fundamental mechanisms involved in the control of vascular oxygen transport.

Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine  in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at  to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower  (P < 0.05 versus normoxia). Despite an exercise-induced increase in oxidative–nitrosative–inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower  in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of the (2 X 1)CO-Pd(110) surface phase has been determined by LEED intensity analysis. The CO molecule is found to be adsorbed in an atop site, tilted by 11-degrees +/- 4-degrees with respect to the surface normal, with a C-O bond length of 1.16 +/- 0.04 angstrom. Interestingly, the C-O vibrational frequency for this system (2003 cm-1) is virtually identical to the frequency observed for the (2 X 1)CO-Ni(110) surface phase (1998 cm-1) which a previous LEED study has shown involves bridge bound CO molecules. The result indicates that care must be taken in assigning site symmetries on the basis of C-O stretching frequencies alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M-1 similar to -17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present nebular-phase optical and near-infrared spectroscopy of the Type IIP supernova SN 2012aw combined with non-local thermodynamic equilibrium radiative transfer calculations applied to ejecta from stellar evolution/explosion models. Our spectral synthesis models generally show good agreement with the ejecta from a MZAMS = 15 Mprogenitor star. The emission lines of oxygen, sodium, and magnesium are all consistent with the nucleosynthesis in a progenitor in the 14-18 M range.We also demonstrate how the evolution of the oxygen cooling lines of [O I] λ5577, [O I] λ6300, and [O I] λ6364 can be used to constrain the mass of oxygen in the non-molecularly cooled ashes to < 1 M, independent of the mixing in the ejecta. This constraint implies that any progenitor model of initial mass greater than 20 M would be difficult to reconcile with the observed line strengths. A stellar progenitor of around MZAMS = 15 M can consistently explain the directly measured luminosity of the progenitor star, the observed nebular spectra, and the inferred pre-supernova mass-loss rate.We conclude that there is still no convincing example of a Type IIP supernova showing the nucleosynthesis products expected from an MZAMS > 20 M progenitor. © 2014 The Author. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory–Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions.
Method:  Solid dispersions were characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry) and spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods. 
Key Findings: Spray drying permitted generation of amorphous solid dispersions to be produced across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug–polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples. 
Conclusion: Using temperature–composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on photoluminescence, Fourier transform infrared spectroscopy, and atomic force microscopy results, a new light emitting model for porous silicon (multiple source quantum well model) is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To create clinically useful gold nanoparticle (AuNP) based cancer therapeutics it is necessary to co-functionalize the AuNP surface with a range of moieties; e.g. Polyethylene Glycol (PEG), peptides and drugs. AuNPs can be functionalized by creating either a mixed monolayer by attaching all the moieties directly to the surface using thiol chemistry, or by binding groups to the surface by means of a bifunctional polyethylene glycol (PEG) linker. The linker methodology has the potential to enhance bioavailability and the amount of functional agent that can be attached. While there is a large body of published work using both surface arrangements independently, the impact of attachment methodology on stability, non-specific protein adsorption and cellular uptake is not well understood, with no published studies directly comparing the two most frequently employed approaches. This paper compares the two methodologies by synthesizing and characterizing PEG and Receptor Mediated Endocytosis (RME) peptide co-functionalized AuNPs prepared using both the mixed monolayer and linker approaches. Successful attachment of both PEG and RME peptide using the two methods was confirmed using Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy and gel electrophoresis. It was observed that while the 'as synthesized' citrate capped AuNPs agglomerated under physiological salt conditions, all the mixed monolayer and PEG linker capped samples remained stable at 1M NaCl, and were stable in PBS over extended periods. While it was noted that both functionalization methods inhibited non-specific protein attachment, the mixed monolayer samples did show some changes in gel electrophoresis migration profile after incubation with fetal calf serum. PEG renders the AuNP stable in-vivo however, studies with MDA-MB-231 and MCF 10A cell lines indicated that functionalization with PEG, blocks cellular uptake. It was observed that co-functionalization with RME peptide using both the mixed monolayer and PEG linker methods greatly enhanced cellular internalization compared to PEG capped AuNPs.