61 resultados para extracellular matrix
Resumo:
BACKGROUND: Advanced glycation endproducts (AGEs) arise from the spontaneous reaction of reducing sugars with the amino groups of macromolecules. AGEs accumulate in tissue as a consequence of diabetes and aging and have been causally implicated in the pathogenesis of several of the end-organ complications of diabetes and aging, including cataract, atherosclerosis, and renal insufficiency. It has been recently proposed that components in mainstream cigarette smoke can react with plasma and extracellular matrix proteins to form covalent adducts with many of the properties of AGEs. We wished to ascertain whether AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers.
MATERIALS AND METHODS: Lens and coronary artery specimens from nondiabetic smokers and nondiabetic nonsmokers were examined by immunohistochemistry, immunoelectron microscopy, and ELISA employing several distinct anti-AGE antibodies. In addition, lenticular extracts were tested for AGE-associated fluorescence by fluorescence spectroscopy.
RESULTS: Immunoreactive AGEs were present at significantly higher levels in the lenses and lenticular extracts of nondiabetic smokers (p < 0.003). Anti-AGE immunogold staining was diffusely distributed throughout lens fiber cells. AGE-associated fluorescence was significantly increased in the lenticular extracts of nondiabetic smokers (p = 0.005). AGE-immunoreactivity was significantly elevated in coronary arteries from nondiabetic smokers compared with nondiabetic nonsmokers (p = 0.015).
CONCLUSIONS: AGEs or immunochemically related molecules are present at higher levels in the tissues of smokers than in nonsmokers, irrespective of diabetes. In view of previous reports implicating AGEs in a causal association with numerous pathologies, these findings have significant ramifications for understanding the etiopathology of diseases associated with smoking, the single greatest preventable cause of morbidity and mortality in the United States.
Resumo:
Fibroblast activation protein-a (FAP-a) promotes tumor growth and cell invasiveness through extracellular matrix degradation. How ultraviolet radiation (UVR), the major risk factor for malignant melanoma, influences the expression of FAP-a is unknown. We examined the effect of UVR on FAP-a expression in melanocytes, keratinocytes and fibroblasts from the skin and in melanoma cells. UVR induces upregulation of FAP-a in fibroblasts, melanocytes and primary melanoma cells (PM) whereas keratinocytes and metastatic melanoma cells remained FAP-a negative. UVA and UVB stimulated FAP-a-driven migration and invasion in fibroblasts, melanocytes and PM. In co-culture systems UVR of melanocytes, PM and cells from regional metastases upregulated FAP-a in fibroblasts but only supernatants from non-irradiated PM were able to induce FAP-a in fibroblasts. Further, UV-radiated melanocytes and PM significantly increased FAP-a expression in fibroblasts through secretory crosstalk via Wnt5a, PDGF-BB and TGF-ß1. Moreover, UV radiated melanocytes and PM increased collagen I invasion and migration of fibroblasts. The FAP-a/DPPIV inhibitor Gly-ProP(OPh)2 significantly decreased this response implicating FAP-a/DPPIV as an important protein complex in cell migration and invasion. These experiments suggest a functional association between UVR and FAP-a expression in fibroblasts, melanocytes and melanoma cells implicating that UVR of malignant melanoma converts fibroblasts into FAP-a expressing and ECM degrading fibroblasts thus facilitating invasion and migration. The secretory crosstalk between melanoma and tumor surrounding fibroblasts is mediated via PDGF-BB, TGF-ß1 and Wnt5a and these factors should be evaluated as targets to reduce FAP-a activity and prevent early melanoma dissemination.
Resumo:
A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i) the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii) cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii) the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs) in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.
Resumo:
Opisthorchis viverrini is an important helminth pathogen of humans that is endemic in Thailand and Laos. Adult flukes reside within host bile ducts and feed on epithelial tissue and blood cells. Chronic opisthorchiasis is associated with severe hepatobiliary diseases such as cholangiocarcinoma. Here we report that adult O. viverrini secrete two major cysteine proteases: cathepsin F (Ov-CF-1) and cathepsin B1 (Ov-CB-1). Ov-CF-1 is secreted as an inactive zymogen that autocatalytically processes and activates to a mature enzyme at pH 4.5 via an intermolecular cleavage at the prosegment-mature domain junction. Ov-CB-1 is also secreted as a zymogen but, in contrast to Ov-CF-1, is fully active against peptide and macromolecular substrates despite retaining the N-terminal prosegment. The active Ov-CB-1 zymogen was capable of trans-activating Ov-CF-1 by proteolytic removal of its prosegment at pH 5.5, a pH at which the Ov-CF-1 zymogen cannot autocatalytically activate. Both cathepsins hydrolyse human haemoglobin but their combined action more efficiently degrades haemoglobin to smaller peptides than each enzyme alone. Ov-CF-1 degraded extracellular matrix proteins more effectively than Ov-CB-1 at physiological pH. We propose that Ov-CB-1 regulates Ov-CF-1 activity and that both enzymes work together to degrade host tissue contributing to the development of liver fluke-associated cholangiocarcinoma.
Resumo:
Specific survival signals derived from extracellular matrix (ECM) and growth factors are required for mammary epithelial cell survival. We have previously demonstrated that inhibition of ECM-induced ERK1/2 MAPK pathway with PD98059 leads to apoptosis in primary mouse mammary epithelial cells. In this study, we have further investigated MAPK signal transduction in cell survival of these cells cultured on a laminin rich reconstituted basement membrane. ERK1/2 phosphorylation is activated in the absence of insulin by cell-cell substratum interactions that cause ligand-independent EGFR transactivation. Intact EGFR signal transduction is required for ECM determined cell survival as the EGFR pathway inhibitor, AG1478, induces apoptosis of these cultures. Rescue of AG1478 or PD98059 treated cultures by PTPase inhibition with vanadate restores cellular phospho-ERK1/2 levels and prevents apoptosis. These results emphasize that ERK1/2 phosphorylation and inhibition of PTPase activity are necessary for PMMEC cell survival.
Resumo:
Mammary epithelial cells cultured on a concentrated laminin-rich extracellular matrix formed 3D acinar structures that matured to polarized monolayers surrounding a lumen. In the absence of glucocorticoids mature acinus formation failed and the expression of an acinus-associated, activator protein 1 (AP1) and nuclear factor kappaB transcription factor DNA-binding profile was lost. Treatment with the JNK inhibitor, SP600125, caused similar effects, whereas normal organization of the mammary epithelial cells as acini caused JNK activation in a glucocorticoid-dependent manner. The forming acini expressed BRCA1, GADD45beta, MEKK4, and the JNK activating complex GADD 45beta-MEKK4 in a glucocorticoid-dependent fashion. JNK catalyzed phosphorylation of c-Jun was also detected in the acini. In addition, expression of beta4 integrin and in situ occupation of its promoter by AP1 components, c-Jun and Fos, was glucocorticoid dependent. These results suggest that glucocortocoid signaling regulates acinar integrity through a pathway involving JNK regulation of AP1 transcription factors and beta4 integrin expression.
Resumo:
Elafin is a 6-kDa innate immune protein present at several epithelial surfaces including the pulmonary epithelium. It is a canonical protease inhibitor of two neutrophil serine proteases [neutrophil elastase (NE) and proteinase 3] with the capacity to covalently bind extracellular matrix proteins by transglutamination. In addition to these properties, elafin also possesses antimicrobial and immunomodulatory activities. The aim of the present study was to investigate the effect of Pseudomonas aeruginosa proteases on elafin function. We found that P aeruginosa PAO1-conditioned medium and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and aeruginolysin (alkaline protease), are able to cleave recombinant elafin. Pseudolysin was shown to inactivate the anti-NE activity of elafin by cleaving its protease-binding loop. Interestingly, antibacterial properties of elafin against PAO1 were found to be unaffected after pseudolysin treatment. In contrast to pseudolysin, aeruginolysin failed to inactivate the inhibitory properties of elafin against NE. Aeruginolysin cleaves elafin at the amino-terminal Lys6-Gly7 peptide bond, resulting in a decreased ability to covalently bind purified fibronectin following transglutaminase activity. In conclusion, this study provides evidence that elafin is susceptible to proteolytic cleavage at alternative sites by P aeruginosa metalloproteinases, which can affect different biological functions of elafin.
Resumo:
Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 loci associated at P <5 × 10(-8). These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include seven loci with associations reaching P <5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL. A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD.
Resumo:
PURPOSE. To describe a new model of posterior capsule opacification (PCO) in rodents METHODS. An extracapsular lens extraction (ECLE), by continuous curvilinear capsulorrhexis and hydrodissection, was performed in 42 consecutive Brown Norway rats. Animals were killed at 0, 6, and 24 hours and 3, 7, and 14 days after surgery. Eyes were enucleated and processed for light microscopy and immunohistochemistry. RESULTS. In 34 (81%) of the animals the operated eye appeared well healed before death, with a clear cornea and a well-formed anterior chamber. In eight (19%) there was no view of anterior segment structures because of hyphema, fibrin, or corneal opacification. PCO was clinically evident 3 days after ECLE and was present in all animals at 2 weeks. Immediately after ECLE, lens epithelial cells (LECs) were present in the inner surface of the anterior capsule and lens bow. Twenty-four hours after surgery, LECs started to migrate toward the center of the posterior capsule. At 3 days, multilayered LECs, some spindle shaped, were present throughout the lens capsule. Capsular wrinkling was apparent. Lens fibers and Soemmering's ring were observed in all animals 14 days after surgery, indicating some degree of cellular differentiation. Activated macrophages were present in greater numbers at 3 and 14 days after surgery (P <0.05), when proliferation and migration of LECs appeared to be greatest, and lens fiber differentiation was evident, respectively. CONCLUSIONS. In rodents PCO occurs after ECLE and is associated with low-grade inflammation, mostly of mononuclear macrophages. Although no intraocular lens implantation was performed, this model appears to be valuable for studying the sequence of events that leads to PCO after cataract surgery and the extracellular matrix cues that promote lens fiber differentiation.
Resumo:
Bacterial aminopeptidases play important roles in pathogenesis by providing a source of amino acids from exogenous proteins, destroying host immunological effector peptides and executing posttranslational modification of bacterial and host proteins. We show that MHJ_0125 from the swine respiratory pathogen Mycoplasma hyopneumoniae represents a new member of the M42 class of bacterial aminopeptidases. Despite lacking a recognizable signal sequence, MHJ_0125 is detectable on the cell surface by fluorescence microscopy and LC-MS/MS of (i) biotinylated surface proteins captured by avidin chromatography and (ii) peptides released by mild trypsin shaving. Furthermore, surface-associated glutamyl aminopeptidase activity was detected by incubation of live M. hyopneumoniae cells with the diagnostic substrate H-Glu-AMC. MHJ_0125 moonlights as a multifunctional adhesin, binding to both heparin and plasminogen. Native proteomics and comparative modelling studies suggest MHJ_0125 forms a dodecameric, homopolymeric structure and provide insight into the positions of key residues that are predicted to interact with heparin and plasminogen. MHJ_0125 is the first aminopeptidase shown to both bind plasminogen and facilitate its activation by tissue plasminogen activator. Plasmin cleaves host extracellular matrix proteins and activates matrix metalloproteases, generating peptide substrates for MHJ_0125 and a source of amino acids for growth of M. hyopneumoniae. This unique interaction represents a new paradigm in microbial pathogenesis.
Resumo:
Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.
Resumo:
The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of increased glycation and/or oxidation in the accelerated formation of glycoxidation products in diabetes, we measured levels of amino acid oxidation products, distinct from glycoxidative modifications of amino acids, as independent indicators of oxidative stress and damage to collagen in aging and diabetes. We show that ortho-tyrosine and methionine sulfoxide are formed in concert with Nepsilon-(carboxymethyl)lysine and pentosidine during glycoxidation of collagen in vitro, and that they also increase with age in human skin collagen. The age-adjusted levels of these oxidized amino acids in collagen was the same in diabetic and nondiabetic subjects, arguing that diabetes per se does not cause an increase in oxidative stress or damage to extracellular matrix proteins. These results provide evidence for an age-dependent increase in oxidative damage to collagen and support previous conclusions that the increase in glycoxidation products in skin collagen in diabetes can be explained by the increase in glycemia alone, without invoking a generalized, diabetes-dependent increase in oxidative stress.
Resumo:
Serine proteases are active in many physiological and pathological processes within bone tissue. Although essential to adequate maintenance of bone and cartilage, their inappropriate expression can lead to exacerbation of tissue destruction and inflammation. Their effects are exerted through multiple pathways, including interaction with signalling molecules such as transforming growth factor ß (TGFß), binding to protease-activated receptors (PARs), and direct proteolysis of extracellular matrix proteins, in some cases working synergistically with matrix metalloproteases in the remodelling of bone tissue. The overall effect of these interactions is not yet clear, but there are strong links between some serine proteases and arthropathies, in addition to metastatic bone invasion. Understanding the contribution of each of these enzymes to the molecular disease process is crucial to developing effective treatment based on inhibitors or agonists. Serine protease inhibitors have shown promise in reducing the severity of arthritis, but greater specificity is required to avoid undesired systemic effects. © 2009 Bentham Science Publishers Ltd.
Resumo:
Acute lung injury is a common, devastating clinical syndrome associated with substantial mortality and morbidity with currently no proven therapeutic interventional strategy to improve patient outcomes. The objectives of this study are to test the potential therapeutic effects of keratinocyte growth factor for patients with acute lung injury on oxygenation and biological indicators of acute inflammation, lung epithelial and endothelial function, protease:antiprotease balance, and lung extracellular matrix degradation and turnover.
Resumo:
Lung matrix homeostasis partly depends on the fine regulation of proteolytic activities. We examined the expression of human cysteine cathepsins (Cats) and their relative contribution to TGF-β1-induced fibroblast differentiation into myofibroblasts. Assays were conducted using both primary fibroblasts obtained from patients with idiopathic pulmonary fibrosis (IPF) and human lung CCD-19Lu fibroblasts. Pharmacological inhibition and genetic silencing of Cat B diminished α-smooth muscle actin expression, delayed fibroblast differentiation and led to an accumulation of intracellular 50-kDa TGF-β1. Moreover addition of Cat B generated 25-kDa mature form of TGF-β1 in Cat B siRNA-pretreated lysates. Inhibition of Cat B decreased Smad 2/3 phosphorylation, but had no effect on p38 MAPK and JNK phosphorylation indicating that Cat B mostly disturbs TGF-β1-driven canonical Smad signaling pathway. While mRNA expression of cystatin C was stable, its secretion, which was inhibited by brefeldin A, increased during TGF-β1-induced differentiation of IPF and CCD-19Lu fibroblasts. In addition cystatin C participated in the control of extracellular Cats, since its gene silencing restored their proteolytic activities. These data support the notion that Cat B participates in lung myofibrogenesis as suggested for stellate cells during liver fibrosis. Moreover, we propose that TGF-β1 promotes fibrosis by driving the effective cystatin C-dependent inhibition of extracellular matrix-degrading Cats.