86 resultados para Tumor gene p53


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Succinate dehydrogenase B (SDHB) and D (SDHD) subunit gene mutations predispose to adrenal and extraadrenal pheochromocytomas, head and neck paragangliomas (HNPGL), and other tumor types. We report tumor risks in 358 patients with SDHB (n = 295) and SDHD (n = 63) mutations. Risks of HNPGL and pheochromocytoma in SDHB mutation carriers were 29% and 52%, respectively, at age 60 years and 71% and 29%, respectively, in SDHD mutation carriers. Risks of malignant pheochromocytoma and renal tumors (14% at age 70 years) were higher in SDHB mutation carriers; 55 different mutations (including a novel recurrent exon 1 deletion) were identified. No clear genotype-phenotype correlations were detected for SDHB mutations. However, SDHD mutations predicted to result in loss of expression or a truncated or unstable protein were associated with a significantly increased risk of pheochromocytoma compared to missense mutations that were not predicted to impair protein stability (most such cases had the common p.Pro81Leu mutation). Analysis of the largest cohort of SDHB/D mutation carriers has enhanced estimates of penetrance and tumor risk and supports in silicon protein structure prediction analysis for functional assessment of mutations. The differing effect of the SDHD p.Pro81Leu on HNPGL and pheochromocytoma, risks suggests differing mechanisms of tumorigenesis in SDH-associated HNPGL and pheochromocytoma. Hum Mutat 31:41-51, 2010. (C) 2009 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed comprehensive genome-wide gene expression profiling (GEP) of extranodal nasal-type natural killer/T-cell lymphoma (NKTL) using formalin-fixed, paraffin-embedded tissue (n = 9) and NK cell lines (n = 5) in comparison with normal NK cells, with the objective of understanding the oncogenic pathways involved in the pathogenesis of NKTL and to identify potential therapeutic targets. Pathway and network analysis of genes differentially expressed between NKTL and normal NK cells revealed significant enrichment for cell cycle-related genes and pathways, such as PLK1, CDK1, and Aurora-A. Furthermore, our results demonstrated a pro-proliferative and anti-apoptotic phenotype in NKTL characterized by activation of Myc and nuclear factor kappa B (NF-kappa B), and deregulation of p53. In corroboration with GEP findings, a significant percentage of NKTLs (n = 33) overexpressed c-Myc (45.4%), p53 (87.9%), and NF-kappa B p50 (67.7%) on immunohistochemistry using a tissue microarray containing 33 NKTL samples. Notably, overexpression of survivin was observed in 97% of cases. Based on our findings, we propose a model of NKTL pathogenesis where deregulation of p53 together with activation of Myc and NF-kappa B, possibly driven by EBV LMP-1, results in the cumulative up-regulation of survivin. Down-regulation of survivin with Terameprocol (EM-1421, a survivin inhibitor) results in reduced cell viability and increased apoptosis in tumour cells, suggesting that targeting survivin may be a potential novel therapeutic strategy in NKTL. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desmoplastic small round cell tumor is a rare malignant neoplasm mostly occurring in the vicinity of or within the peritoneal cavity, and is uncommon in the head and neck region. Tumor location within a major salivary gland is exceptional. We report a case of a 41-year-old Chinese man with a history of diabetes mellitus and end-stage renal failure on peritoneal dialysis with a desmoplastic small round cell tumor occurring in the left submandibular gland. Fine-needle aspiration cytology showed variably cohesive clusters of small cells with hyperchromatic nuclei and fine granular chromatin. On histology the neoplasm displayed classic features of a desmoplastic small round cell tumor with angulated nests of small round blue cells in a fibromyxoid/desmoplastic stroma. Neoplastic cells were immunoreactive for cytokeratins (AE1/3), desmin (paranuclear dot-like), WT-1 (nuclear), epithelial membrane antigen, and CD56. EWS gene translocation and EWS-WT1 gene fusion were detected by fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction, respectively. The case presented is the sixth case of and the oldest reported patient with a desmoplastic small round cell tumor occurring in a major salivary gland to date. Desmoplastic small round cell tumor should be considered in the differential diagnosis of a salivary gland neoplasm with a basaloid or small cell pattern on fine-needle aspiration cytology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The transcription Factor RUNX3 is a gastric tumor suppressor. Tumorigenic Runx3(-/-) gastric epithelial cells attach weakly to each other, compared with nontumorigenic Runx3(+/+) cells. We alined to identify RUNX3 target genes that promote cell-cell contact to Improve our understanding of RUNX3's role in Suppressing gastric carcinogenesis. METHODS: We compared gene expression profiles of Runx3(+/+) and Runx3(-/-) cells and observed down-regulation of genes associated with cell-cell adhesion in Runx3(-/-) cells. Reporter, mobility shift, and chromatin immunoprecipitation assays were used to examine the regulation of these genes by RUNX3. Tumorigenesis assays and immunohistologic, analyses of human gastric tumors were performed to confirm the role of the candidate genes ill gastric tumor development. RESULTS: Mobility shift and chromatin immunoprecipitation assays revealed that the promoter activity of the gene that encodes the tight Junction protein claudin-1 was up-regulated via the binding of RUNX3 to the RUNX consensus sites. The tumorigenicity of gastric epithelial cells From Runx3(-/-) mice was significantly reduced by restoration of claudin-1 expression, whereas knockdown of claudin-1. increased the tumorigenicity of human gastric cancer cells. Concomitant expression of RUNX3 and claudin-1 was observed in human normal gastric epithelium and cancers. CONCLUSIONS: The tight junction protein claudin-1 has gastric tumor suppressive activity and is a direct transcriptional target of RUNX3. Claudin-1 is down-regulated during the epithelial-mesenchymal transition; RUNX3 might therefore act as a tumor suppressor to antagonize the epithelial-mesenchymal transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligand-induced activation of peroxisome proliferator-activated receptor gamma (PPAIR gamma) inhibits proliferation in cancer cells in vitro and in vivo; however, the downstream targets remain undefined. We report the identification of a peroxisome proliferator response element in the promoter region of the Na+/ H transporter gene NHE1, the overexpression of which has been associated with carcinogenesis. Exposure of breast cancer cells expressing high levels of PPAR gamma to its natural and synthetic agonists resulted in downregulation of NHE1 transcription as well as protein expression. Furthermore, the inhibitory effect of activated PPAR gamma on tumor colony-forming ability was abrogated on overexpression of NHE1, whereas small interfering RNA-mediated gene silencing of NHE1 significantly increased the sensitivity of cancer cells to growth-inhibitory stimuli. Finally, histopathologic analysis of breast cancer biopsies obtained from patients with type II diabetes treated with the synthetic agonist rosiglitazone showed significant repression of NHE1 in the tumor tissue. These data provide evidence for tumor-selective downregulation of NHE1 by activated PPAR gamma in vitro and in pathologic specimens from breast cancer patients and could have potential implications for the judicious use of low doses of PPAR gamma ligands in combination chemotherapy regimens for an effective therapeutic response. [Cancer Res 2009;69(22):8636-44]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteosarcomas are the most prevalent primary bone tumors found in pediatric patients. To understand their molecular etiology, cell culture models are used to define disease mechanisms under controlled conditions. Many osteosarcoma cell lines (e.g., SAOS-2, U2OS, MG63) are derived from Caucasian patients. However, patients exhibit individual and ethnic differences in their responsiveness to irradiation and chemotherapy. This motivated the establishment of osteosarcoma cell lines (OS1, OS2, OS3) from three ethnically Chinese patients. OS1 cells, derived from a pre-chemotherapeutic tumor in the femur of a 6-year-old female, were examined for molecular markers characteristic for osteoblasts, stem cells, and cell cycle control by immunohistochemistry, reverse transcriptase-PCR, Western blotting and flow cytometry. OS I have aberrant G-banded karyotypes, possibly reflecting chromosomal abnormalities related to p53 deficiency. OS I had ossification profiles similar to human fetal osteoblasts rather than SAOS-2 which ossifies ab initio, (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical and pathological heterogeneity of breast cancer hinders selection of appropriate treatment for individual cases. Molecular profiling at gene or protein levels may elucidate the biological variance of tumors and provide a new classification system that correlates better with biological, clinical and prognostic parameters. We studied the immunohistochemical profile of a panel of seven important biomarkers using tumor tissue arrays. The tumor samples were then classified with a monothetic (binary variables) clustering algorithm. Two distinct groups of tumors are characterized by the estrogen receptor (ER) status and tumor grade (p = 0.0026). Four biomarkers, c-erbB2, Cox-2, p53 and VEGF, were significantly overexpressed in tumors with the ER-negative (ER-) phenotype. Eight subsets of tumors were further identified according to the expression status of VEGF, c-erbB2 and p53. The malignant potential of the ER-/VEGF+ subgroup was associated with the strong correlations of Cox-2 and c-erb132 with VEGF. Our results indicate that this molecular classification system, based on the statistical analysis of immunohistochemical profiling, is a useful approach for tumor grouping. Some of these subgroups have a relative genetic homogeneity that may allow further study of specific genetically-controlled metabolic pathways. This approach may hold great promise in rationalizing the application of different therapeutic strategies for different subgroups of breast tumors. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue microarrays allow high throughput molecular profiling of diagnostic or predictive markers in cancer specimens and rapid validation of novel potential candidates identified from genomic and proteomic analyses in a large number of tumor samples. To validate the use of tissue microarray technology for all the main biomarkers routinely used to decide breast cancer prognostication and postsurgical adjuvant therapy, we constructed a tissue microarray from 97 breast tumors, with a single 0.6 mm core per specimen. Inummostaining; of tissue microarray sections and conventional full sections of each tumor were performed using well-characterized prognostic markers (estrogen receptor ER, progesterone receptor PR and c-erbB2). The full section versus tissue microarray concordance for these stains was 97% for ER, 98% for PR, and 97% for c-erbB2, respectively, with a strong statistical association (kappa value more than 0.90). Fluorescence in situ hybridization analysis for HER-2/neu gene amplification from the single-core tissue microarray was technically successful in about 90% (87/97) of the cases, with a concordance of 95% compared with parallel analyses with the full sections. The correlation with other pathological parameters was not significantly different between full-section and array-based results. It is concluded that the constructed tissue microarray with a single core per specimen ensures full biological representativeness to identify the associations between biomarkers and clinicopathological parameters, with no significant associated sampling bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of human gastrointestinal stromal tumors (GIST) are driven by activating mutations in the protooncogene KIT, a tyrosine kinase receptor. Clinical treatment with imatinib targets the kinase domain of KIT, but tumor regrowth occurs as a result of them development of resistant mutations in the kinase active site. An alternative small-molecule approach to GIST therapy is described, in which the KIT gene is directly targeted, and thus, kinase resistance may be circumvented. A naphthalene diimide derivative has been used to demonstrate the concept of dual quadruplex targeting. This compound strongly stabilizes both telomeric quadruplex DNA and quadruplex sites in the KIT promoter in vitro. It is shown here that the compound is a potent inducer of growth arrest in a patient-derived GIST cell line at a concentration (similar to 1 mu M) that also results in effective inhibition of telomerase activity and almost complete suppression of KIT mRNA and KIT protein expression. Molecular modeling studies with a telomeric quadruplex have been used to rationalize aspects of the experimental quadruplex melting data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) may follow a JAK2-positive myeloproliferative neoplasm (MPN), although the mechanisms of disease evolution, often involving loss of mutant JAK2, remain obscure. We studied 16 patients with JAK2-mutant (7 of 16) or JAK2 wild-type (9 of 16) AML after a JAK2-mutant MPN. Primary myelofibrosis or myelofibrotic transformation preceded all 7 JAK2-mutant but only 1 of 9 JAK2 wild-type AMLs (P = .001), implying that JAK2-mutant AML is preceded by mutation(s) that give rise to a "myelofibrosis" phenotype. Loss of the JAK2 mutation by mitotic recombination, gene conversion, or deletion was excluded in all wild-type AMLs. A search for additional mutations identified alterations of RUNX1, WT1, TP53, CBL, NRAS, and TET2, without significant differences between JAK2-mutant and wild-type leukemias. In 4 patients, mutations in TP53, CBL, or TET2 were present in JAK2 wild-type leukemic blasts but absent from the JAK2-mutant MPN. By contrast in a chronic-phase patient, clones harboring mutations in JAK2 or MPL represented the progeny of a shared TET2-mutant ancestral clone. These results indicate that different pathogenetic mechanisms underlie transformation to JAK2 wild-type and JAK2-mutant AML, show that TET2 mutations may be present in a clone distinct from that harboring a JAK2 mutation, and emphasize the clonal heterogeneity of the MPNs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topoisomerase I inhibitor irinotecan is used to treat advanced colorectal cancer and has been shown to have p53-independent anticancer activity. The aim of this study was to identify the p53-independent signaling mechanisms activated by irinotecan. Transcriptional profiling of isogenic HCT116 p53 wild-type and p53 null cells was carried out following treatment with the active metabolite of irinotecan, SN38. Unsupervised analysis methods showed that p53 status had a highly significant impact on gene expression changes in response to SN38. Pathway analysis indicated that pathways involved in cell motility [adherens junction, focal adhesion, mitogen-activated protein kinase (MAPK), and regulation of the actin cytoskeleton] were significantly activated in p53 null cells, but not p53 wild-type cells, following SN38 treatment. In functional assays, SN38 treatment increased the migratory potential of p53 null and p53-mutant colorectal cancer cell lines, but not p53 wild-type lines. Moreover, p53 null SN38-resistant cells were found to migrate at a faster rate than parental drug-sensitive p53 null cells, whereas p53 wild-type SN38-resistant cells failed to migrate. Notably, cotreatment with inhibitors of the MAPK pathway inhibited the increased migration observed following SN38 treatment in p53 null and p53-mutant cells. Thus, in the absence of wild-type p53, SN38 promotes migration of colorectal cancer cells, and inhibiting MAPK blocks this potentially prometastatic adaptive response to this anticancer drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital or familial erythrocytosis/polycythemia can have many causes, and an emerging cause is genetic disruption of the oxygen-sensing pathway that regulates the Erythropoietin (EPO) gene. More specifically, recent studies have identified erythrocytosis-associated mutations in the HIF2A gene, which encodes for Hypoxia Inducible Factor-2a (HIF-2a), as well as in two genes that encode for proteins that regulate it, Prolyl Hydroxylase Domain protein 2 (PHD2) and the von Hippel Lindau tumor suppressor protein (VHL). We report here the identification of two new heterozygous HIF2A missense mutations, M535T, and F540L, both associated with erythrocytosis. Met-535 has previously been identified as a residue mutated in other patients with erythrocytosis; although, the mutation of this particular residue to Thr has not been reported. In contrast, Phe-540 has not been reported as a residue mutated in erythrocytosis, and we present evidence here that this mutation impairs interaction of HIF-2a with both VHL and PHD2. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. In the heterogeneous group of hepatocellular carcinomas, those with characteristics of embryonic stem-cell and progenitor-cell gene expression are associated with the worst prognosis. The oncofetal gene SALL4, a marker of a subtype of hepatocellular carcinoma with progenitor-like features, is associated with a poor prognosis and is a potential target for treatment.