98 resultados para Ti : sapphire


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon-on-sapphire (SOS) substrates have been proven to offer significant advantages in the integration of passive and active devices in RF circuits. Germanium on insulator technology is a candidate for future higher performance circuits. Thus the advantages of employing a low loss dielectric substrate other than a silicon-dioxide layer on silicon will be even greater. This paper covers the production of germanium on sapphire (GeOS) substrates by wafer bonding. The quality of the germanium back interface is studied and a tungsten self-aligned gate process MOST process has been developed. High low field mobilities of 450-500 cm2/V-s have been achieved for p-channel MOSTs produced on GeOS substrates. Thick germanium on alumina (GOAL) substrates have also been produced.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation localisation is the main reason for material failure in cold forging of titanium alloys and is thus closely related to the production yield of cold forging. In the study of the influence of process parameters on dynamic compression, considering material constitutive behaviour, physical parameters and process parameters, a numerical dynamic compression model for titanium alloys has been constructed. By adjusting the process parameters, the severity of strain localisation and stress state in the localised zone can be controlled thus enhancing the compression performance of titanium alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between microstructure and deformation and damage behaviour during dynamic compression in Ti-3Al-5Mo-5V alloy has been studied using several experimental techniques, including optical microscopy, scanning electron microscopy and microhardness measurements. It was found that the deformation behaviour during dynamic compression was closely related to deformation parameters. After dynamic deformation, the deformation shear band that formed in the titanium alloy had microhardness similar to that of the matrix. However, the microhardness of the white shear band was much higher than the matrix microhardness. The effects of deformation parameters, including deformation rate and deformation degree, on deformation localisation were investigated. Based on the results from the present work, the microstructure and deformation processing parameters can be optimised. In addition, treatment methods after dynamic compression were explored to restore alloy properties. Using post-deformation heat treatment, the microstructure and property inhomogeneity caused by shear bands could be largely removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Domain states in PbZr(0.42)Ti(0.58)O3 single-crystal ferroelectric nanodots, formed on cooling through the Curie temperature, were imaged by transmission electron microscopy. In the majority of cases, 90o stripe domains were found to form into four distinct “bundles” or quadrants. Detailed analysis of the dipole orientations in the system was undertaken, using both dark-field imaging and an assumption that charged domain walls were energetically unfavorable in comparison to uncharged walls. On this basis, we conclude that the dipoles in these nanodots are arranged such that the resultant polarizations, associated with the four quadrant domain bundles, form into a closed loop. This “polarization closure” pattern is reminiscent of the flux-closure already commonly observed in soft ferromagnetic microdots but to date unseen in analogous ferroelectric dots.