47 resultados para Temporary hair dye
Resumo:
Background: There are many issues regarding the use of real patients in objective structured clinical examinations (OSCEs). In dermatology OSCE stations, standardised patients (SPs) with clinical photographs are often used. Temporary transfer tattoos can potentially simulate skin lesions when applied to an SP. This study aims to appraise the use of temporary malignant melanoma tattoos within an OSCE framework. Method: Within an 11-station OSCE, a temporary malignant melanoma tattoo was developed and applied to SPs in a 'skin lesion' OSCE station. A questionnaire captured the opinions of the candidate, SP and examiners, and the degree of perceived realism of each station was determined. Standard post hoc OSCE analysis determined the psychometric reliability of the stations. Results: The response rates were 95.9 per cent of candidates and 100 per cent of the examiners and SPs. The 'skin lesion' station achieved the highest realism score compared with other stations: 89.0 per cent of candidates felt that the skin lesion appeared realistic; only 28 per cent of candidates had ever seen a melanoma before in training. The psychometric performance of the melanoma station was comparable with, and in many instances better than, other OSCE stations. Discussion: Transfer tattoo technology facilitates a realistic dermatology OSCE station encounter. Temporary tattoos, alongside trained SPs, provide an authentic, standardised and reliable experience, allowing the assessment of integrated dermatology clinical skills.
Resumo:
Dye-sensitized solar cells have attracted intense research attention owing to their ease of fabrication, cost-effectiveness and high efficiency in converting solar energy. Noble platinum is generally used as catalytic counter electrode for redox mediators in electrolyte solution. Unfortunately, platinum is expensive and non-sustainable for long-term applications. Therefore, researchers are facing with the challenge of developing low-cost and earth-abundant alternatives. So far, rational screening of non-platinum counter electrodes has been hamstrung by the lack of understanding about the electrocatalytic process of redox mediators on various counter electrodes. Here, using first-principle quantum chemical calculations, we studied the electrocatalytic process of redox mediators and predicted electrocatalytic activity of potential semiconductor counter electrodes. On the basis of theoretical predictions, we successfully used rust (alpha-Fe2O3) as a new counter electrode catalyst, which demonstrates promising electrocatalytic activity towards triiodide reduction at a rate comparable to platinum.
Resumo:
Chili powder is a globally traded commodity which has been found to be adulterated with Sudan dyes from 2003 onwards. In this study, chili powders were adulterated with varying quantities of Sudan I dye (0.1-5%) and spectra were generated using near infrared reflectance spectroscopy (NIRS) and Raman
spectroscopy (on a spectrometer with a sample compartment modified as part of the study). Chemometrics were applied to the spectral data to produce quantitative and qualitative calibration models and prediction statistics. For the quantitative models coefficients of determination (R2) were found to be
0.891-0.994 depending on which spectral data (NIRS/Raman) was processed, the mathematical algorithm used and the data pre-processing applied. The corresponding values for the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were found to be 0.208-0.851%
and 0.141-0.831% respectively, once again depending on the spectral data and the chemometric treatment applied to the data. Indications are that the NIR spectroscopy based models are superior to the models produced from Raman spectral data based on a comparison of the values of the chemometric
parameters. The limit of detection (LOD) based on analysis of 20 blank chili powders against each calibration model gave 0.25% and 0.88% for the NIR and Raman data, respectively. In addition, adopting a qualitative approach with the spectral data and applying PCA or PLS-DA, it was possible to discriminate
between adulterated chili powders from non-adulterated chili powders.
Resumo:
Mesoporous materials were used as adsorbents for dye removal in different media: non-ionic, buffered and saline. The mesoporous materials used were commercial (silica gel) as well as as-synthesised materials (SBA-15 and a novel mesoporous carbon). Dye adsorption onto all the materials was very fast and the equilibrium was reached before 1h. The pH has a significant influence on the adsorption capacity for the siliceous materials since the electrostatic interactions are the driving forces. However, the influence of the pH on the adsorption capacity of the carbonaceous material was lower, since the van der Waals interactions are the driving forces. The ionic strength has a great impact on the siliceous materials adsorption capacity, being their adsorption capacity in a buffered medium six times higher than the corresponding to a non-ionic medium. Nevertheless, ionic strength does not influence on the dye adsorption on the mesoporous carbon. Overall, the as-synthesised carbon material presents a clear potential to treat dye effluents, showing high adsorption capacity (qe≈200mg/g) in all the pH range studied (from 3 to 11); even at low concentrations (Ce≈10mg/L) and at short contact times (te<30min).
Resumo:
The use of TiO 2 photocatalysis for the destruction of dyes such as methylene blue has been extensively reported. One of the challenges faced in both the laboratory and large scale water treatment plants is the fact that the samples have to be removed from the reactor vessel and the catalyst separated prior to analysis being undertaken. In this paper we report the development of a simple fluorimeter instrument and its use in monitoring the photocatalytic destruction of methylene blue dyes in the presence of catalyst suspensions. The results reported show that the instrument provides an effective method for in situ monitoring of the photocatalytic destruction of fluorescent dyes hence allowing more accurate measurement due to the minimisation of sample loss and cross contamination. Furthermore it also provides a method for real time monitoring of the dye pollutant destruction in large scale photocatalytic reactors.
Resumo:
Dye-sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large-scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high-efficiency Pt-free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously. Herein, for the first time, a two-step strategy to synthesize ruthenium dioxide (RuO2) nanocrystals is reported, and it is shown that RuO2 catalysts exhibit promising electrocatalytic activity towards triiodide reduction, which results in comparable energy conversion efficiency to that of conventional Pt CEs. More importantly, by virtue of first-principles calculations, the catalytic mechanism of electrocatalysis for triiodide reduction on various CEs is investigated systematically and it is found that the electrochemical triiodide reduction reaction on RuO2 catalyst surfaces can be enhanced significantly, owing to the ideal combination of good electrocatalytic activity and high electrical conductivity.
Resumo:
Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.
Resumo:
Background: Small adenomas may be missed during colonoscopy, but chromoscopy has been reported to enhance detection. The aim of this randomized-controlled trial was to determine the effect of total colonic dye spray on adenoma detection during routine colonoscopy.
Methods: Consecutive outpatients undergoing routine colonoscopy were randomized to a dye-spray group (0.1% indigo carmine used to coat the entire colon during withdrawal from the cecum) or control group (no dye).
Results: Two hundred fifty-nine patients were randomized, 124 to the dye-spray and 135 to the control group; demographics, indication for colonoscopy, and quality of the preparation were similar between the groups. Extubation from the cecum took a median of 9:05 minutes (range: 2:4824:44 min) in the dye-spray group versus 4:52 minutes (range: 1:42-15:21 min] in the control group (p <0.0001). The proportion of patients with at least 1 adenoma and the total number of adenomas were not different between groups. However, in the dye-spray group significantly more diminutive adenomas (
Conclusions: Dye-spray increases the detection of small adenomas in the proximal colon and patients with multiple adenomas, but long-term outcomes should be studied to determine the clinical value of these findings.
Resumo:
Paper focusing on the use and significance of hair and hair style in ancient societies
Resumo:
Temporary Places is a community and art project in North Belfast at two interface areas, New Lodge and Skegoneill/ Glandore. This project (Jan 2013-ongoing) is a collaboration between New Lodge Arts
(lead administrative partner), PS2 (project curators) and Skegoneill & Glandore Common Purpose (community organisation). ‘Temporary Places’ was and still is a project about social and urban regeneration, partly through familiar strategies and activities and partly through more unorthodox, direct and creative interventions. It is an art and community project for all residents and the wider community.
There are several components to the project, but the key and ongoing element is to activate the empty spaces at the Skegoniell / Glandore Interface, by making a 'garden space' of creative activity - now known as Peaspark
Resumo:
A nanocomposite porous electrode structure consisting of hierarchical iodine-doped zinc oxide (I-ZnO) aggregates combined with the two simple solution-processed interfacial modifications i.e. a ZnO compact layer (CL) and a TiO2 protective layer (PL) has been developed in order to understand electron transport and recombination in the photoanode matrix, together with boosting the conversion efficiency of I-ZnO based dye-sensitized solar cells (DSCs). Electrochemical impedance spectra demonstrate that ZnO CL pre-treatment and TiO2 PL post-treatment synergistically reduce charge-transfer resistance and suppress electron recombination. Furthermore, the electron lifetime in two combined modifications of IZnO + CL + PL photoelectrode is the longest in comparison with the other three photoelectrodes. As a consequence, the overall conversion efficiency of I-ZnO + CL + PL DSC is significantly enhanced to 6.79%, with a 36% enhancement compared with unmodified I-ZnO DSC. Moreover, the stability of I-ZnO + CL + PL cell is improved as compared to I-ZnO one. The mechanism of electron transfer and recombination upon the introduction of ZnO CL and TiO2 PL is also proposed in this work.
Resumo:
To better understand the nature of temporary spatial clusters (TSC’s) in industrial marketing settings, this conceptual paper first provides a theoretical synthesis of spatial understanding from the industrial marketing (IM) and economic geography (EG) fields, focusing particularly on Doreen Massey’s work on relational space. This leads to a conceptual schema for organizing the IM literature in terms of spatiality, and which also helps clarify the ontological nature of TSCs. We then move to introduce the notion of institutional boundary-work, drawing on the work of Thomas Gieryn, and Andrea Brighenti’s examination of territorology, to conceptualize the activities of market actors engaged in the ongoing social accomplishment of TSCs. Such activities, we suggest, involve these actors ‘marching’ boundaries to assume network influence and maintain market order in IM settings. In summary, therefore, our paper addresses two fundamental questions: i) How do we conceptualize the form of TSCs in IM settings? And, ii) what function(s) are TSCs performing (and how is this being undertaken) in IM? The paper closes by providing methodological guidance for how a research agenda on TSCs within IM activity might be developed, followed by a summary of the managerial implications that emerge from our theorizations.
Resumo:
The Game is On! is a series of short animated films that put copyright and creativity under the magnifying glass of Sherlock Holmes, providing a unique, research-led and open access resource for school-aged learners and other creative users of copyright. Drawing inspiration from well-known copyright and public domain work, as well as recent copyright litigation, these films provide a springboard for exploring key principles and ideas underpinning copyright law, creativity, and the limits of lawful appropriation and reuse.
Each episode comes accompanied by a number of related Case Files: supplementary educational materials aimed at suggesting points of discussion about copyright for teachers and students.