33 resultados para TRANSIENT ANALYSIS
Resumo:
An efficient and robust case sorting algorithm based on Extended Equal Area Criterion (EEAC) is proposed in this paper for power system transient stability assessment (TSA). The time-varying degree of an equivalent image system can be deduced by comparing the analysis results of Static EEAC (SEEAC) and Dynamic EEAC (DEEAC), the former of which neglects all time-varying factors while the latter partially considers the time-varying factors. Case sorting rules according to their transient stability severity are set combining the time-varying degree and fault messages. Then a case sorting algorithm is designed with the “OR” logic among multiple rules, based on which each case can be identified into one of the following five categories, namely stable, suspected stable, marginal, suspected unstable and unstable. The performance of this algorithm is verified by studying 1652 contingency cases from 9 real Chinese provincial power systems under various operating conditions. It is shown that desirable classification accuracy can be achieved for all the contingency cases at the cost of very little extra computational burden and only 9.81% of the whole cases need to carry out further detailed calculation in rigorous on-line TSA conditions.
Resumo:
This paper presents the applications of a novel methodology to quantify saltwater intrusion parameters in laboratory-scale experiments. The methodology uses an automated image analysis procedure, minimizing manual inputs and the subsequent systematic errors that can be introduced. This allowed the quantification of the width of the mixing zone which is difficult to measure in experimental methods that are based on visual observations. Glass beads of different grain sizes were tested for both steady-state and transient conditions. The transient results showed good correlation between experimental and numerical intrusion rates. The experimental intrusion rates revealed that the saltwater wedge reached a steady state condition sooner while receding than advancing. The hydrodynamics of the experimental mixing zone exhibited similar
traits; a greater increase in the width of the mixing zone was observed in the receding saltwater wedge, which indicates faster fluid velocities and higher dispersion. The angle of intrusion analysis revealed the formation of a volume of diluted saltwater at the toe position when the saltwater wedge is prompted to recede. In addition, results of different physical repeats of the experiment produced an average coefficient of variation less than 0.18 of the measured toe length and width of the mixing zone.
Resumo:
The pathogenesis of Alzheimer's disease (AD) is complex involving multiple contributing factors. The extent to which AD pathology impacts upon the metabolome is still not understood, nor is it known how disturbances change as the disease progresses. For the first time we have profiled longitudinally (6, 8, 10, 12 and 18 months) both the brain and plasma metabolome of APP/PS1 double transgenic and wild type (WT) mice. A total of 187 metabolites were quantified using a targeted metabolomics methodology. Multivariate statistical analysis produced models that distinguished APP/PS1 from WT mice at 8, 10 and 12 months.Metabolic pathway analysis found perturbed polyamine metabolism in both brain and blood plasma. There were other disturbances in essential amino acids,branched chain amino acids and also in the neurotransmitter serotonin.Pronounced imbalances in phospholipid and acylcarnitine homeostasis was evident in two age groups. AD-like pathology therefore impacts greatly on both the brain and blood metabolomes, although there appears to be a clear temporal sequence whereby changes to brain metabolites precede those in blood.