50 resultados para Steam-engines


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different natural zeolites having different phase compositions were obtained from different regions of Turkey and modified by ion-exchange (0.5 M NH4NO3) and acid leaching using 1 M HCl. The natural and modified samples were treated at low temperature (LT), high temperature (HT) and steam (ST) conditions and characterised by XRF, XRD, BET, FTIR, DR-UV-Vis, NH3-TPD and TGA. Ion-exchange with NH4+ of natural zeolites results in the exchange of the Na+ and Ca2+ cations and the partial exchange of the Fe3+ and Mg2+ cations. However, steam and acidic treatments cause significant dealumination and decationisation, as well as loss of crystalline, sintering of phases and the formation of amorphous material. The presence of mordenite and quartz phases in the natural zeolites increases the stability towards acid treatment, whereas the structure of clinoptilolite-rich zeolites is mostly maintained after high temperature and steam treatments. The natural and modified zeolites treated at high temperature and in steam were found to be less stable compared with synthetic zeolites, resulting in a loss of crystallinity, a decrease in the surface area and pore volume, a decrease in the surface acidity as well as dealumination, and decationisation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social scientists and other analysts have written about medicalization since at least the 1970s. Most of these studies depict the medical profession, interprofessional or organizational contests, or social movements and interest groups as the prime movers toward medicalization. This article contends that changes in medicine in the past two decades are altering the medicalization process. Using several case examples, I argue that three major changes in medical knowledge and organization have engendered an important shift in the engines that drive medicalization: biotechnology (especially the pharmaceutical industry and genetics), consumers, and managed care. Doctors are still gatekeepers for medical treatment, but their role has become more subordinate in the expansion or contraction of medicalization. Medicalization is now more driven by commercial and market interests than by professional claims-makers. The definitional center of medicalization remains constant, but the availability of new pharmaceutical and potential genetic treatments are increasingly drivers for new medical categories. This requires a shift in the sociological focus examining medicalization for the twenty-first century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In any internal combustion engine, the amount of heat rejected from the engine, and associated systems, is a result of the engine inefficiency. Successfully recovering a small proportion of this energy would therefore substantially improve the fuel economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adoption of each new level of automotive emissions legislation often requires the introduction of additional emissions reduction techniques or the development of existing emissions control systems. This, in turn, usually requires the implementation of new sensors and hardware which must subsequently be monitored by the on-board fault detection systems. The reliable detection and diagnosis of faults in these systems or sensors, which result in the tailpipe emissions rising above the progressively lower failure thresholds, provides enormous challenges for OBD engineers. This paper gives a review of the field of fault detection and diagnostics as used in the automotive industry. Previous work is discussed and particular emphasis is placed on the various strategies and techniques employed. Methodologies such as state estimation, parity equations and parameter estimation are explained with their application within a physical model diagnostic structure. The utilization of symptoms and residuals in the diagnostic process is also discussed. These traditional physical model based diagnostics are investigated in terms of their limitations. The requirements from the OBD legislation are also addressed. Additionally, novel diagnostic techniques, such as principal component analysis (PCA) are also presented as a potential method of achieving the monitoring requirements of current and future OBD legislation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co3O4, Fe2O3 and a mixture of the two oxides Co–Fe (molar ratio of Co3O4/Fe2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 °C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O3 on the catalytic behaviour. The reforming activity over Fe2O3, while initially high, underwent fast deactivation. In comparison, over the Co–Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co–Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co–Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practical untenability of the quasi-static assumption makes any realistic engine intrinsically irreversible and its operating time finite, thus implying friction effects at short cycle times. An important technological goal is thus the design of maximally efficient engines working at the maximum possible power. We show that, by utilising shortcuts to adiabaticity in a quantum engine cycle, one can engineer a thermodynamic cycle working at finite power and zero friction. Our findings are illustrated using a harmonic oscillator undergoing a quantum Otto cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly reactive radicals play an important role in high-temperature gasification processes. However, the effect of radicals on gasification has not been systematically investigated. In the present study, the formation of carbon-radical precursors using atomic radicals such as OH, O, and H and molecules such as H2 and O2 was characterized, and the effect of the precursors on the adsorption step of steam char gasification was studied using quantum chemistry methods. The results revealed that the radicals can be chemisorbed exothermically on char active sites, and the following order of reactivity was observed: O > H2 > H > OH > O 2. Moreover, hydrogen bonds are formed between steam molecules and carbon-radical complexes. Steam molecule adsorption onto carbon-O and carbon-OH complexes is easier than adsorption onto clean carbon surfaces. Alternatively, adsorption on carbon-O2, carbon-H2, and carbon-H complexes is at the same level with that of clean carbon surfaces; thus, OH and O radicals accelerate the physical adsorption of steam onto the char surface, H radical and O2 and H2 molecules do not have a significant effect on adsorption. © 2010 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic theoretical study on the adsorption of steam and its thermal decomposition products on carbon both zigzag and armchair surface was performed to provide molecular-level understanding of the reaction activity of all these reactants in biomass steam gasification process. All the calculations were carried out using density functional theory (DFT) at the B3LYP/6-31+g(d,p) level. The structures of carbonaceous surfaces, all reactants and surface complexes were optimized and characterized. Based on the value of adsorption heat been obtained from the calculation, the activity of all reactants can be ordered as: O > O2 >H2 >H >OH >H2O for both zigzag and armchair surface, and the adsorption style is physisorption to water molecule and chemisorption to the other dissociated components.