135 resultados para Randomized Optimization
Resumo:
This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.
Resumo:
In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.
Resumo:
In this paper, we analyze the enormous potential of engineering source/drain extension (SDE) regions in FinFETs for ultra-low-voltage (ULV) analog applications. SDE region design can simultaneously improve two key analog figures of merit (FOM)-intrinsic de gain (A(vo)) and cutoff frequency (f(T)) for 60 and 30 nm FinFETs operated at low drive current (J(ds) = 5 mu A/mu m). The improved Avo and fT are nearly twice compared to those of devices with abrupt SDE regions. The influence of the SDE region profile and its impact on analog FOM is extensively analyzed. Results show that SDE region optimization provides an additional degree of freedom apart from device parameters (fin width and aspect ratio) to design future nanoscale analog devices. The results are analyzed in terms of spacer-to-straggle ratio a new design parameter for SDE engineered devices. This paper provides new opportunities for realizing future ULV/low-power analog design with FinFETs.
Resumo:
Surrogate-based-optimization methods provide a means to achieve high-fidelity design optimization at reduced computational cost by using a high-fidelity model in combination with lower-fidelity models that are less expensive to evaluate. This paper presents a provably convergent trust-region model-management methodology for variableparameterization design models: that is, models for which the design parameters are defined over different spaces. Corrected space mapping is introduced as a method to map between the variable-parameterization design spaces. It is then used with a sequential-quadratic-programming-like trust-region method for two aerospace-related design optimization problems. Results for a wing design problem and a flapping-flight problem show that the method outperforms direct optimization in the high-fidelity space. On the wing design problem, the new method achieves 76% savings in high-fidelity function calls. On a bat-flight design problem, it achieves approximately 45% time savings, although it converges to a different local minimum than did the benchmark.
Resumo:
Background
Over the past ten years MRSA has become endemic in hospitals and is associated with increased healthcare costs. Critically ill patients are most at risk, in part because of the number of invasive therapies that they require in the intensive care unit (ICU). Washing with 5% tea tree oil (TTO) has been shown to be effective in removing MRSA on the skin. However, to date, no trials have evaluated the potential of TTO body wash to prevent MRSA colonization or infection. In addition, detecting MRSA by usual culture methods is slow. A faster method using a PCR assay has been developed in the laboratory, but requires evaluation in a large number of patients.
Methods/Design
This study protocol describes the design of a multicentre, phase II/III prospective open-label randomized controlled clinical trial to evaluate whether a concentration of 5% TTO is effective in preventing MRSA colonization in comparison with a standard body wash (Johnsons Baby Softwash) in the ICU. In addition we will evaluate the cost-effectiveness of TTO body wash and assess the effectiveness of the PCR assay in detecting MRSA in critically ill patients. On admission to intensive care, swabs from the nose and groin will be taken to screen for MRSA as per current practice. Patients will be randomly assigned to be washed with the standard body wash or TTO body wash. On discharge from the unit, swabs will be taken again to identify whether there is a difference in MRSA colonization between the two groups.
Discussion
If TTO body wash is found to be effective, widespread implementation of such a simple colonization prevention tool has the potential to impact on patient outcomes, healthcare resource use and patient confidence both nationally and internationally.
Trial Registration
[ISRCTN65190967]
Resumo:
Background and Purpose—Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of a new nonrobotic training device, the Sensorimotor Active Rehabilitation Training (SMART) Arm, that was used with or without electromyography-triggered electrical stimulation of triceps brachii to augment elbow extension, permitting stroke survivors with severe paresis to practice a constrained reaching task.
Methods—A single-blind, randomized clinical trial was conducted with 42 stroke survivors with severe and chronic paresis. Thirty-three participants completed the study, of whom 10 received training using the SMART Arm with electromyography-triggered electrical stimulation, 13 received training using the SMART Arm alone, and 10 received no intervention (control). Training consisted of 12 1-hour sessions over 4 weeks. The primary outcome measure was “upper arm function,” item 6 of the Motor Assessment Scale. Secondary outcome measures included impairment measures; triceps muscle strength, reaching force, modified Ashworth scale; and activity measures: reaching distance and Motor Assessment Scale. Assessments were administered before (0 weeks) and after training (4 weeks) and at 2 months follow-up (12 weeks).
Results—Both SMART Arm groups demonstrated significant improvements in all impairment and activity measures after training and at follow-up. There was no significant difference between these 2 groups. There was no change in the control group.
Conclusions—Our findings indicate that training of reaching using the SMART Arm can reduce impairment and improve activity in stroke survivors with severe and chronic upper limb paresis, highlighting the benefits of intensive task-oriented practice, even in the context of severe paresis.