126 resultados para RHODIUM NANOPARTICLES
Resumo:
Decomposition of methyl 2-diazophenylacetate in the presence of silanes and a chiral dirhodium(11) catalyst results in Si-H insertion of the intermediate carbenoid with varying degrees of enantioselectivity. New chiral dirhodium(11) carboxylate catalysts were identified using solution phase parallel synthesis techniques. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Rhodium(II) acetate-catalyzed reaction of Et 2-diazo-2-diethoxyphosphorylate, EtO2CC(:N2)PO(OEt)2, with carbamates, amides, ureas or anilines gives a range of N-substituted 2-amino-2-diethoxyphosphorylacetates, EtO2CCH(NHR1)PO(OEt)2 (where R1 = Boc, Cbz, acetyl, propionyl, pivaloyl, n-Pr, Ph and substituted Ph groups), by N-H insertion reaction of the intermediate rhodium carbenoid.
Resumo:
Rh(II) acetate-catalyzed decompn. of diazophenylacetates PhC(N2)CO2Me 1 and PhC(N2)CO2R* 3 [R*OH = (-)-borneol, (+)-menthol, (-)-8-phenylmenthol] in the presence of a range of N-H compds. results in an N-H insertion reaction of the intermediate carbenoids and formation of N-substituted phenylglycine derivs. PhCH(NR1R2)CO2Me 2 [R1 = R2 = Et; R1 = 4-MeOC6H4, COCH2CHMe2, CO2CH2Ph, (S)-CH(CO2Me)CH2Ph, (S)-CHMePh, R2 = H; 64-83% yields] and PhCH(NR1R2)CO2R* 4 (R1 = R2 = Et; R1 = COMe, CO2Me, R2 = H; same R*; 37-71% yields). The corresponding reactions of di-Me ?-diazobenzylphosphonate PhC(N2)P(O)(OMe)2 5 with primary amines constitute a simple route to aminophosphonates PhCH(NHR)P(O)(OMe)2 6 (R = COMe, COEt, CO2CH2Ph, CO2CMe3, 4-ClC6H4, 4-MeC6H4, 4-MeOC6H4; 13-96% yields).
Resumo:
Buck, Richard T.; Doyle, Michael P.; Drysdale, Martin J.; Ferris, Leigh; Forbes, David C.; Haigh, David; Moody, Christopher J.; Pearson, Neil D.; Zhou, Qi-Lin. Dep. Chemistry, Loughborough Univ., Loughborough, Leicestershire, UK. Tetrahedron Letters (1996), 37(42), 7631-7634. Publisher: Elsevier, CODEN: TELEAY ISSN: 0040-4039. Journal written in English. CAN 125:328854 AN 1996:644681 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract Decompn. of Me 2-diazophenylacetate in the presence of dimethylphenylsilane and a chiral dirhodium(II) catalyst results in Si-H insertion of the intermediate carbenoid to give PhCH(SiMe2Ph)CO2Me with varying degrees of enantioselectivity (up to 47% ee; 47% using (S)-Rh2L4, LH = I).
Resumo:
New chiral dirhodium(II) carboxylates were prepd. from Rh2(OAc)4 and half phthalate esters and or pyrroles. Their use as catalysts for the decompn. of diazocarbonyl compds. studied.
Resumo:
Substituted phenols undergo a facile Rh carbenoid-mediated O-H insertion reaction with (EtO)2P(O)C(:N2)CO2R (I; R = Et, Me) to give 44-86% 2-aryloxyphosphonoacetates II (R1 = e.g., H, 4-Me, 4-Cl, 2-OH, 4-PhCH2O). Phenols contg. strongly electron withdrawing groups, bulky ortho-substituents or certain ortho-heteroatom substituents show reduced or variable yields. Catechol affords a mono-adduct which cyclizes to lactate III. Aniline inserts preferentially and exclusively over phenol in a competition reaction with I (R = Et) to give (EtO)2P(O)CH(NHPh)CO2Et. II are versatile intermediates in a prepn. of 2-aryloxy-3-phenylpropenoates IV by Wadsworth-Emmons reaction with benzaldehydes R2C6H4CHO (R2 = PhCH2O, 2-Cl, H). Dissolving Mg metal redn. provides a mild method for the conversion of propenoates IV into the corresponding propanoates.
Resumo:
Rhodium(II) carboxylate catalyzed decompn. of diazo esters 3 (shown as I) and PhCH2C(CO2Et)N2 4 in the presence of alcs. or water results in formation of 2-alkoxy- or 2-hydroxy-3-arylpropanoates, resp., by O-H insertion in competition with cinnamates by elimination; the ratio of insertion to elimination is dramatically affected by the carboxylate ligand on rhodium. Use of methanol-d as the alc. confirms that the alkene does not arise by elimination from the initial alkoxyester product.
Resumo:
In this present work we describe a poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulation for intracellular delivery of plasmid DNA. This formulation was developed to encapsulate DNA within PLGA nanoparticles that combined salting out and emulsion evaporation processes. This process reduced the requirement for sonication which can induce degradation of the DNA. A monodispersed nanoparticle population with a mean diameter of approximately 240 nm was produced, entrapping a model plasmid DNA in both supercoiled and open circular structures. To induce endosomal escape of the nanoparticles, a superficial cationic charge was introduced using positively charged surfactants cetyl trimethylammonium bromide (CTAB) and dimethyldidodecylammonium bromide (DMAB), which resulted in elevated zeta potentials. As expected, both cationic coatings reduced cell viability, but at equivalent positive zeta potentials, the DMAB coated nanoparticles induced significantly less cytotoxicity than those coated with CTAB. Fluorescence and transmission electron microscopy demonstrated that the DMAB coated cationic nanoparticles were able to evade the endosomal lumen and localise in the cytosol of treated cells. Consequently, DMAB coated PLGA nanoparticles loaded with a GFP reporter plasmid exhibited significant improvements in transfection efficiencies with comparison to non-modified particles, highlighting their functional usefulness. These nanoparticles may be useful in delivery of gene therapies to targeted cells. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Antibody targeting of drug substances can improve the efficacy of the active molecule, improving distribution and concentration of the drug at the site of injury/disease. Encapsulation of drug substances into polymeric nanoparticles can also improve the therapeutic effects of such compounds by protecting the molecule until its action is required. In this current study, we have brought together these two rationales to develop a novel immunonanoparticle with improved therapeutic effect against colorectal tumor cells. This nanoparticle comprised a layer of peripheral antibodies (Ab) directed toward the Fas receptor (CD95/Apo-1) covalently attached to poly(lactide-co-glycolide) nanoparticles (NP) loaded with camptothecin. Variations in surface carboxyl density permitted up to 48.5 mu g coupled Ab per mg of NP and analysis of nanoparticulate cores showed efficient camptothecin loading. Fluorescence visualization studies confirmed internalization of nanoconstructs into endocytic compartments of HCT 116 cells, an effect not evident in NP without superficial Ab. Cytotoxicity studies were then carried out against HCT116 cells. After 72 h, camptothecin solution resulted in an IC50 of 21.8 ng mL(-1). Ab-directed delivery of NP-encapsulated camptothecin was shown to be considerably more effective with an IC50 of 0.37 ng mL(-1). Calculation of synergistic ratios for these nanoconstructs demonstrated synergy of pharmacological relevance. Indeed, the results in this paper suggest that the attachment of anti-Fas antibodies to camptothecin-loaded nanoparticles may result in a therapeutic strategy that could have potential in the treatment of tumors expressing death receptors.
Resumo:
In recent years, nanoparticulate-mediated drug delivery research has examined a full spectrum of nanoparticles that can be used in diagnostic and therapeutic cancer applications. A key aspect of this technology is in the potential to specifically target the nanoparticles to diseased cells using a range of molecules, in particular antibodies. Antibody-nanoparticle conjugates have the potential to elicit effective targeting and release of therapeutic targets at the disease site, while minimizing off-target side effects caused by dosing of normal tissues. This article provides an overview of various antibody-conjugated nanoparticle strategies, focusing on the rationale of cell-surface receptors targeted and their potential clinical application.
Resumo:
Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.