60 resultados para RBF NLGA reti neurali quadrotor identificazione Matlab simulatori controlli automatici
Resumo:
The simultaneous heat and moisture transfer in the building envelope has an important influence on the indoor environment and the overall performance of buildings. In this paper, a model for predicting whole building heat and moisture transfer was presented. Both heat and moisture transfer in the building envelope and indoor air were simultaneously considered; their interactions were modeled. The coupled model takes into account most of the main hygrothermal effects in buildings. The coupled system model was implemented in MATLAB-Simulink, and validated by using a series of published testing tools. The new program was applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption under different climates. The results show that the use of more detailed simulation routines can result in improvements to the building's design for energy optimisation through the choice of proper hygroscopic materials, which would not be indicated by simpler calculation techniques.
Resumo:
This paper deals with an experimental investigation into the velocity distribution downstream of a propeller, operating at bollard pull conditions and in the presence of a mobile sediment bed. Previous investigations either ignored the effect of a rudder in the wash or considered only its influence on an unconfined jet. The velocity profiles within the jet produced by a rotating propeller with a rudder present were measured at a mobile bed and compared to currently available predictive equations. The velocity distribution profiles in the jet, influenced by bed proximity, were found not to comply with current predictive methods. The velocity distributions measured within the jet were found to be complex and non-symmetrical. To provide a basic velocity predictive tool, a neural network analysis toolbox within Matlab was utilised and trained using the experimental data.
Resumo:
This paper investigates the control and operation of doubly-fed induction generator (DFIG) and fixed-speed induction generator (FSIG) based wind farms under unbalanced grid conditions. A DFIG system model suitable for analyzing unbalanced operation is developed, and used to assess the impact of an unbalanced supply on DFIG and FSIG operation. Unbalanced voltage at DFIG and FSIG terminals can cause unequal heating on the stator windings, extra mechanical stresses and output power fluctuations. These problems are particularly serious for the FSIG-based wind farm without a power electronic interface to the grid. To improve the stability of a wind energy system containing both DFIG and FSIG based wind farms during network unbalance, a control strategy of unbalanced voltage compensation by the DFIG systems is proposed. The DFIG system compensation ability and the impact of transmission network impedance are illustrated. The simulation results implemented in Matlab/Simulink show that the proposed DFIG control system improves not only its own performance, but also the stability of the FSIG system with the same grid connection point during network unbalance.
Resumo:
In this paper, a novel video-based multimodal biometric verification scheme using the subspace-based low-level feature fusion of face and speech is developed for specific speaker recognition for perceptual human--computer interaction (HCI). In the proposed scheme, human face is tracked and face pose is estimated to weight the detected facelike regions in successive frames, where ill-posed faces and false-positive detections are assigned with lower credit to enhance the accuracy. In the audio modality, mel-frequency cepstral coefficients are extracted for voice-based biometric verification. In the fusion step, features from both modalities are projected into nonlinear Laplacian Eigenmap subspace for multimodal speaker recognition and combined at low level. The proposed approach is tested on the video database of ten human subjects, and the results show that the proposed scheme can attain better accuracy in comparison with the conventional multimodal fusion using latent semantic analysis as well as the single-modality verifications. The experiment on MATLAB shows the potential of the proposed scheme to attain the real-time performance for perceptual HCI applications.
Resumo:
This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.
Resumo:
Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.
Resumo:
To improve the performance of classification using Support Vector Machines (SVMs) while reducing the model selection time, this paper introduces Differential Evolution, a heuristic method for model selection in two-class SVMs with a RBF kernel. The model selection method and related tuning algorithm are both presented. Experimental results from application to a selection of benchmark datasets for SVMs show that this method can produce an optimized classification in less time and with higher accuracy than a classical grid search. Comparison with a Particle Swarm Optimization (PSO) based alternative is also included.
Resumo:
The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available.
Resumo:
This paper presents a new algorithm for learning the structure of a special type of Bayesian network. The conditional phase-type (C-Ph) distribution is a Bayesian network that models the probabilistic causal relationships between a skewed continuous variable, modelled by the Coxian phase-type distribution, a special type of Markov model, and a set of interacting discrete variables. The algorithm takes a dataset as input and produces the structure, parameters and graphical representations of the fit of the C-Ph distribution as output.The algorithm, which uses a greedy-search technique and has been implemented in MATLAB, is evaluated using a simulated data set consisting of 20,000 cases. The results show that the original C-Ph distribution is recaptured and the fit of the network to the data is discussed.
Resumo:
Measures of icon designs rely heavily on surveys of the perceptions of population samples. Thus, measuring the extent to which changes in the structure of an icon will alter its perceived complexity can be costly and slow. An automated system capable of producing reliable estimates of perceived complexity could reduce development costs and time. Measures of icon complexity developed by Garcia, Badre, and Stasko (1994) and McDougall, Curry, and de Bruijn (1999) were correlated with six icon properties measured using Matlab (MathWorks, 2001) software, which uses image-processing techniques to measure icon properties. The six icon properties measured were icon foreground, the number of objects in an icon, the number of holes in those objects, and two calculations of icon edges and homogeneity in icon structure. The strongest correlates with human judgments of perceived icon complexity (McDougall et al., 1999) were structural variability (r(s) = .65) and edge information (r(s) =.64).
Resumo:
The Richardson-Lucy algorithm is one of the most important algorithms in the image deconvolution area. However, one of its drawbacks is slow convergence. A very significant acceleration is obtained by the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the Image Processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the Heavy-Ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has proof of the convergence rate of O(k-2), where k is the number of iterations. We demonstrate the superior convergence performance of the scaled H-B method on both synthetic and real 3D images.
Resumo:
Despite the increased applications of the composite materials in aerospace due to their exceptional physical and mechanical properties, the machining of composites remains a challenge. Fibre reinforced laminated composites are prone to different damages during machining process such as delamination, fibre pull-out, microcracks, thermal damages. Optimization of the drilling process parameters can reduces the probability of these damages. In the current research, a 3D finite element (FE) model is developed of the process of drilling in the carbon fibre reinforced composite (CFC). The FE model is used to investigate the effects of cutting speed and feed rate on thrust force, torque and delamination in the drilling of carbon fiber reinforced laminated composite. A mesoscale FE model taking into account of the different oriented plies and interfaces has been proposed to predict different damage modes in the plies and delamination. For validation purposes, experimental drilling tests have been performed and compared to the results of the finite element analysis. Using Matlab a digital image analysis code has been developed to assess the delamination factor produced in CFC as a result of drilling. © Springer Science+Business Media B.V. 2011.
Resumo:
his paper proposes an optimisation-based method to calculate the critical slip (speed) of dynamic stability and critical clearing time (CCT) of a self-excited induction generator (SEIG). A simple case study using the Matlab/Simulink environment has been included to exemplify the optimisation method. Relationships between terminal voltage, critical slip and reactance of transmission line, CCT and inertial constant have been determined, based on which analysis of impact on relaying setting has been further conducted for another simulation case.
Resumo:
Polymer extrusion is regarded as an energy-intensive production process, and the real-time monitoring of both energy consumption and melt quality has become necessary to meet new carbon regulations and survive in the highly competitive plastics market. The use of a power meter is a simple and easy way to monitor energy, but the cost can sometimes be high. On the other hand, viscosity is regarded as one of the key indicators of melt quality in the polymer extrusion process. Unfortunately, viscosity cannot be measured directly using current sensory technology. The employment of on-line, in-line or off-line rheometers is sometimes useful, but these instruments either involve signal delay or cause flow restrictions to the extrusion process, which is obviously not suitable for real-time monitoring and control in practice. In this paper, simple and accurate real-time energy monitoring methods are developed. This is achieved by looking inside the controller, and using control variables to calculate the power consumption. For viscosity monitoring, a ‘soft-sensor’ approach based on an RBF neural network model is developed. The model is obtained through a two-stage selection and differential evolution, enabling compact and accurate solutions for viscosity monitoring. The proposed monitoring methods were tested and validated on a Killion KTS-100 extruder, and the experimental results show high accuracy compared with traditional monitoring approaches.