84 resultados para Pseudorandom permutation ensemble


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet star radius ratio and inclination of the system, which were found to be R-p/R-star = 0.1664(-0.0018)(+0.0011) and i = 81.73(-0.04)(+0.13), respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi(2) = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T-c(0) = 2454632.62610 +/- 0.00006 HJD and P = 1.3061864 +/- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrostatic trapping scheme for use in the study of light-induced dissociation of molecular ions is outlined. We present a detailed description of the electrostatic reflection storage device and specifically demonstrate its use in the preparation of a vibrationally cold ensemble of deuterium hydride (HD+) ions. By interacting an intense femtosecond laser with this target and detecting neutral fragmentation products, we are able to elucidate previously inaccessible dissociation dynamics for fundamental diatomics in intense laser fields. In this context, we present new results of intense field dissociation of HD+ which are interpreted in terms of recent theoretical calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing programme using the rapid imager to search for exoplanets instrument on the Liverpool Telescope. The light curves are analysed using a Markov chain Monte Carlo algorithm to update the parameters of the system. The inclination is found to be i = 86.75+0.22-0.21°, the planet-star radius ratio to be Rp/R* = 0.1098+0.0010-0.0012 and the stellar radius to be R* = 0.834+0.018-0.026Rsolar, consistent with previous results but with a significant improvement in the precision. Central transit times and uncertainties for each light curve are also determined, and a residual permutation algorithm is used as an independent check on the errors. The transit times are found to be consistent with a linear ephemeris, and a new ephemeris is calculated as Tc(0) = 2454856.70118 +/- 0.00018 HJD and P = 2.899738 +/- 0.000007 d. Model timing residuals are fitted to the measured timing residuals to place upper mass limits for a hypothetical perturbing planet as a function of the period ratio. These show that we have probed for planets with masses as low as 0.33 and 1.81 M? in the interior and exterior 2:1 resonances, respectively, assuming the planets are initially in circular orbits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quasi-classical model (QCM) of nuclear wavepacket generation, modification and imaging by three intense ultrafast near-infrared laser pulses has been developed. Intensities in excess of 10(13) W cm(-2) are studied, the laser radiation is non-resonant and pulse durations are in the few-cycle regime, hence significantly removed from the conditions typical of coherent control and femtochemistry. The 1s sigma ground state of the D-2 precursor is projected onto the available electronic states in D-2(+) (1s sigma(g) ground and 2p sigma(u) dissociative) and D+ + D+ (Coulomb explosion) by tunnel ionization by an ultrashort 'pump' pulse, and relative populations are found numerically. A generalized non-adiabatic treatment allows the dependence of the initial vibrational population distribution on laser intensity to be calculated. The wavepacket is approximated as a classical ensemble of particles moving on the 1s sigma(g) potential energy surface (PES), and hence follow trajectories of different amplitudes and frequencies depending on the initial vibrational state. The 'control' pulse introduces a time-dependent polarization of the molecular orbital, causing the PES to be modified according to the dynamic Stark effect and the transition dipole. The trajectories adjust in amplitude, frequency and phase-offset as work is done on or by the resulting force; comparing the perturbed and unperturbed trajectories allows the final vibrational state populations and phases to be determined. The action of the 'probe' pulse is represented by a discrete internuclear boundary, such that elements of the ensemble at a larger internuclear separation are assumed to be photodissociated. The vibrational populations predicted by the QCM are compared to recent quantum simulations (Niederhausen and Thumm 2008 Phys. Rev. A 77 013404), and a remarkable agreement has been found. The applicability of this model to femtosecond and attosecond time-scale experiments is discussed and the relation to established femtochemistry and coherent control techniques are explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bonn Convention on the Conservation of Migratory Species of Wild Animals adopted a Resolution in 2005 recognising the impacts of climate change on migratory species. It called on Contracting Parties to undertake more research to improve our understanding of these impacts and to implement adaptation measures to reduce foreseeable adverse effects. Given the large diversity of taxa and species affected by climate change, it is impossible to monitor all species and effects thereof. However, it is likely that many of the key ecological and physical processes through which climate change may impact wildlife could be monitored using a suite of indicators, each comprising parameters of species/populations or groups of species as proxies for wider assemblages, habitats and ecosystems. Herein, we identify a suite of 17 indicators whose attributes could reveal negative impacts of climate change on the global status of migratory species: 4 for birds, 4 for marine mammals, 2 for sea turtles, 1 for fish, 3 for land mammals and 3 for bats. A few of these indicators would be relatively straightforward to develop, but most would require additional data collation, and in many cases methodological development. Choosing and developing indicators of the impacts of climate change on migratory species is a challenge, particularly with endangered species, which are subject to many other pressures. To identify and implement conservation measures for these species, indicators must account for the full ensemble of pressures, and link to a system of alerts and triggers for action.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the presence of inhomogeneities, defects and currents, the equations describing a Bose-condensed ensemble of alkali atoms have to be solved numerically. By combining both linear and nonlinear equations within a Discrete Variable Representation framework, we describe a computational scheme for the solution of the coupled Bogoliubov-de Gennes (BdG) and nonlinear Schrodinger (NLS) equations for fields in a 3D spheroidal potential. We use the method to calculate the collective excitation spectrum and quasiparticle mode densities for excitations of a Bose condensed gas in a spheroidal trap. The method is compared against finite-difference and spectral methods, and we find the DVR computational scheme to be superior in accuracy and efficiency for the cases we consider. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies have provided compelling evidence implicating the Notch signalling pathway in diabetic nephropathy. Co-regulation of Notch signalling pathway genes with GREM1 has recently been demonstrated and several genes involved in the Notch pathway are differentially expressed in kidney biopsies from individuals with diabetic nephropathy. We assessed single-nucleotide polymorphisms (SNPs; n = 42) in four of these key genes (JAG1, HES1, NOTCH3 and ADAM10) for association with diabetic nephropathy using a case-control design.
Tag SNPs and potentially functional SNPs were genotyped using Sequenom or Taqman technologies in a total of 1371 individuals with type 1 diabetes (668 patients with nephropathy and 703 controls without nephropathy). Patients and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK (http://pngu.mgh.harvard.edu/similar to purcell/plink/) and haplotype frequencies in patients and controls were compared. Adjustment for multiple testing was performed by permutation testing.
In analyses stratified by centre, we identified six SNPs, rs8708 and rs11699674 (JAG1), rs10423702 and rs1548555 (NOTCH3), rs2054096 and rs8027998 (ADAM10) as being associated with diabetic nephropathy before, but not after, adjustment for multiple testing. Haplotype and subgroup analysis according to duration of diabetes also failed to find an association with diabetic nephropathy.
Our results suggest that common variants in JAG1, HES1, NOTCH3 and ADAM10 are not strongly associated with diabetic nephropathy in type 1 diabetes among white individuals. Our findings, however, cannot entirely exclude these genes from involvement in the pathogenesis of diabetic nephropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background
Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically.

Results
In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently.

Conclusions
For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basing the conception of language on the sign represents also an obstacle to the awareness of certain elements of human life, especially to a full understanding of what language or art do, Henri Meschonnic’s poetics of the continuum and of rhythm criticizes the sign based on Benveniste’s terms of rhythm and discourse, developing an anthropology of language. Rhythm, for Meschonnic, is no formal metrical but a semantic principle, each time unique and unforeseeable. As for Humboldt, his starting point is not the word but the ensemble of speech; language is not ergon but energeia. The poem then is not a literary form but a process of transformation that Meschonnic defines as the invention of a form of life by a form of language and vice versa. Thus a poem is a way of thinking and rhythm is form in movement. The particular subject of art and literature is consequently not the author but a process of subjectivation – this is the contrary of the conception of the sign. By demonstrating the limits of the sign, Meschonnic’s poetics attempts to thematize the intelligibility of presence. Art and literature raise our awareness of this element of human life we cannot grasp conceptually. This poetical thinking is a necessary counterforce against all institutionalization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symmetrical and unsymmetrical ligands containing terpyridyl coordinating units (N, N, N) or a cyclometalating equivalent (N, C, N), connected back-to-back either directly or via a p-terphenylene or 1,3-phenylene spacer, have been used to construct new diruthenium complexes. These compounds incorporate various terdentate chelates as capping ligands, to allow a double control of the electronic properties of each subcomplex and of the ensemble: via the terminal ligand or through the bridging fragment. Electronic coupling was studied from the intervalence transitions observed in several bimetallic ruthenium complexes of the bis-(cyclometalated) type differing by the substitution of a nitrogen atom by carbon in the terminal terpyridyl unit. The largest metal-metal interaction was found in complexes for which the terminal complexing unit is of the 1,3-di-2-pyridylbenzene type, i.e., with the carbon atom located on the metal-metal C-2 axis of the molecule. Investigations of the mechanism of interaction by extended Huckel calculations showed that the replacement of nitrogen by carbon raises the filled ligand levels, increasing the mixing with ligand orbitals and thus the metal-metal coupling. Finally, the intervalence transition was still observed for a bridging ligand containing three phenylene units as spacers, corresponding to a 24-Angstrom metal-metal distance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overnight audiovisual composition for 13 musicians and film projections. The ensemble continuously constructs and deconstructs a 26-part chord, a 13-part natural harmonic series that always beats in near-unison with itself. A projector shows three superimposed films prepared as continuously extending loops. Members of the audience, who are invited to sleep during the performance, shift between waking and dreaming states. Concept and composition by Gascia Ouzounian. Film by Chloe Griffin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors consider a point percolation lattice representation of a large-scale wireless relay sensor network (WRSN) deployed in a cluttered environment. Each relay sensor corresponds to a grid point in the random lattice and the signal sent by the source is modelled as an ensemble of photons that spread in the space, which may 'hit' other sensors and are 'scattered' around. At each hit, the relay node forwards the received signal to its nearest neighbour through direction-selective relaying. The authors first derive the distribution that a relay path reaches a prescribed location after undergoing certain number of hops. Subsequently, a closed-form expression of the average received signal strength (RSS) at the destination can be computed as the summation of all signal echoes' energy. Finally, the effect of the anomalous diffusion exponent ß on the mean RSS in a WRSN is studied, for which it is found that the RSS scaling exponent e is given by (3ß-1)/ß. The results would provide useful insight into the design and deployment of large-scale WRSNs in future. © 2011 The Institution of Engineering and Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system and allow us to link the detection of the DCE to the Kibble-Zurek mechanism for the production of defects when crossing a continuous phase transition.