59 resultados para Parametric Vibration
Resumo:
A parametric study of cold-formed steel sections with web openings subjected to web crippling was undertaken using finite element analysis, to investigate the effects of web holes and cross-section sizes on the web crippling strengths of channel sections subjected to web crippling under both interior-two-flange (ITF) and end-two-flange (ETF) loading conditions. In both loading conditions, the hole was centred beneath the bearing plate. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the flat depth of the web, and the ratio of the length of bearing plates to the flat depth of the web. In this paper, design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.
Resumo:
This study examines the relative performance of Japanese cooperative banks between 1998 and 2009, explicitly modeling non-performing loans as an undesirable output. Three key findings emerge. First, the sector is characterized by increasing returns to scale which supports the ongoing amalgamation process within the sector. Second, although restricted in product offerings, markets and their membership base, Japanese cooperatives secured both technical progress (a positive shift in the frontier) and a decrease in technical inefficiency (distance from the frontier). Third, the analysis highlighted that regulatory pressure to reduce non-performing loans will have an adverse impact on both output and performance.
Resumo:
In this paper, a data driven orthogonal basis function approach is proposed for non-parametric FIR nonlinear system identification. The basis functions are not fixed a priori and match the structure of the unknown system automatically. This eliminates the problem of blindly choosing the basis functions without a priori structural information. Further, based on the proposed basis functions, approaches are proposed for model order determination and regressor selection along with their theoretical justifications. © 2008 IEEE.
Resumo:
Eighteen participants (22-43 years) were randomly allocated to one of two groups: resistance training combined with vibration (VIB; five males, four females) or resistance training alone (CON; five males, four females). Each participant trained three sessions per week (three sets of 10 seated calf raises against a load, which was increased progressively from 75% of one repetition maximum (1RM) to 90% 1RM for 4 weeks. For the VIB group, a vibratory stimulus (30 Hz, 2.5 mm amplitude) was applied to the soles of the feet by a vibration platform. The two groups did not differ significantly with respect to the total amount of work performed during training. Both groups showed a significant increase in maximum voluntary contraction and 1RM (P
Resumo:
Utilising cameras as a means to survey the surrounding environment is becoming increasingly popular in a number of different research areas and applications. Central to using camera sensors as input to a vision system, is the need to be able to manipulate and process the information captured in these images. One such application, is the use of cameras to monitor the quality of airport landing lighting at aerodromes where a camera is placed inside an aircraft and used to record images of the lighting pattern during the landing phase of a flight. The images are processed to determine a performance metric. This requires the development of custom software for the localisation and identification of luminaires within the image data. However, because of the necessity to keep airport operations functioning as efficiently as possible, it is difficult to collect enough image data to develop, test and validate any developed software. In this paper, we present a technique to model a virtual landing lighting pattern. A mathematical model is postulated which represents the glide path of the aircraft including random deviations from the expected path. A morphological method has been developed to localise and track the luminaires under different operating conditions. © 2011 IEEE.
Resumo:
Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.
Resumo:
Parametric interactions in nonlinear crystals represent a powerful tool in the optical manipulation of information, both in the classical and the quantum regime. Here, we analyze in detail classical and quantum aspects of three-and five-mode parametric interactions in chi(2) nonlinear crystals. The equations of motion are explicitly derived and then solved within the parametric approximation. We describe several applications, including holography, all-optical gates, generation of entanglement, and telecloning. Experimental results on the photon distributions and correlations of the generated beams are also reported and discussed.
Resumo:
An approach for seismic damage identification of a single-storey steel concentrically braced frame (CBF) structure is presented through filtering and double integration of a recorded acceleration signal. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. The pre-processing achieves reliable numerical integration that predicts the displacement response accurately when compared to the measured lateral in-plane displacement of the CBF structure. The lateral displacement of the CBF structure is used to infer buckling and yielding of bracing members through seismic tests. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated displacement limits. The calculated buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify initial buckling and yielding in the bracing members.
Resumo:
This paper investigates a wavelet-based damage detection approach for bridge structures. By analysing the continuous wavelet transform of the vehicle response, the approach aims to identify changes in the bridge response which may indicate the existence of damage. A numerical vehicle-bridge interaction model is used in simulations as part of a sensitivity study. Furthermore, a laboratory experiment is carried out to investigate the effects of varying vehicle configuration, speed and bridge damping on the ability of the vehicle to detect changes in the bridge response. The accelerations of the vehicle and bridge are processed using a continuous wavelet transform, allowing time-frequency analysis to be carried out on the responses of the laboratory vehicle-bridge interaction system. Results indicate the most favourable conditions for successful implementation of the approach.
Resumo:
Continuous research endeavors on hard turning (HT), both on machine tools and cutting tools, have made the previously reported daunting limits easily attainable in the modern scenario. This presents an opportunity for a systematic investigation on finding the current attainable limits of hard turning using a CNC turret lathe. Accordingly, this study aims to contribute to the existing literature by providing the latest experimental results of hard turning of AISI 4340 steel (69 HRC) using a CBN cutting tool. An orthogonal array was developed using a set of judiciously chosen cutting parameters. Subsequently, the longitudinal turning trials were carried out in accordance with a well-designed full factorial-based Taguchi matrix. The speculation indeed proved correct as a mirror finished optical quality machined surface (an average surface roughness value of 45 nm) was achieved by the conventional cutting method. Furthermore, Signal-to-noise (S/N) ratio analysis, Analysis of variance (ANOVA), and Multiple regression analysis were carried out on the experimental datasets to assert the dominance of each machining variable in dictating the machined surface roughness and to optimize the machining parameters. One of the key findings was that when feed rate during hard turning approaches very low (about 0.02mm/rev), it could alone be most significant (99.16%) parameter in influencing the machined surface roughness (Ra). This has, however also been shown that low feed rate results in high tool wear, so the selection of machining parameters for carrying out hard turning must be governed by a trade-off between the cost and quality considerations.