69 resultados para Noncommutative Geometry
Resumo:
Purpose: The aim of this study is to compare the sensitivity of different metrics to detect differences in complexity of intensity modulated radiation therapy (IMRT) plans following upgrades, changes to planning parameters, and patient geometry. Correlations between complexity metrics are also assessed.
Resumo:
We report what is to our knowledge the first demonstration of a transient x-ray laser pumped by a 350-fs pulse in a traveling-wave irradiation geometry. For a 500-fs pump pulse the traveling-wave irradiation was found to have a strong effect on enhancing the Ni-like silver 4d-4p lasing emission at 13.9 nm. The signal enhancement was significantly less when the pulse duration was lengthened to 1.7 ps. The experimental observations are well reproduced by a simple model when the duration of gain is taken of the order of 15-20 ps. For the 500-fs pulse a gain coefficient of 14.5 cm(-1) was measured for plasma lengths up to 7 mm. Refraction of the amplified photons is believed to be the main cause of the limitation of the effective amplification length. (C) 2000 Optical Society of America.
Resumo:
Aluminium thin films were deposited by a laser ablation technique from solid cylindrical targets rotated on a lead screw. Both smooth-surfaced targets and targets with screw threads cut into the area to he irradiated were used. The targets were irradiated with a focused circular spot size of 2.5 mm in diameter, at a power density equal to 5.4 +/- 0.2 x 10(8) W cm(-2). The polar distribution of the ablated atomic material was found to vary as a function of the target screw thread pitch, with the exponent n, in the polar distribution f(theta) = cos(n) theta, varying from 13.5 +/- 1.3 for no pitch to a minimum of 5 +/- 0.7 for a screw thread pitch of 0.2 mm. The use of such novel target geometries forms a possible basis for increasing thickness uniformity during the pulsed laser deposition of thin films.
Resumo:
The spatial coherence of a nanosecond pulsed germanium collisionally excited x-ray laser is measured experimentally for three target configurations. The diagnostic is based on Young's slit interference fringes with a dispersing element to resolve the 23.2- and 23.6-nm spectral lines. Target configurations include a double-slab target, known as the injector, and geometries in which the injector image is image relayed to seed either an additional single-slab target or a second double-slab target. A special feature of this study is the observation of the change in the apparent source size with angle of refraction across the diverging laser beam. Source sizes derived with a Gaussian source model decrease from 44 mu m for the injector target by a variable factor of as much as 2, according to target configuration, for beams leaving the additional amplifiers after strong refraction in the plasma. (C) 1998 Optical Society of America [S0740-3224(98)00810-8].
Resumo:
We have developed a PW (0.5 ps/500J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature.
Resumo:
Off-design performance is of key importance now in the design of automotive turbocharger turbines. Due to automotive drive cycles, a turbine that can extract more energy at high pressure ratios and lower rotational speeds is desirable. Typically a radial turbine provides peak efficiency at U/C values of 0.7, but at high pressure ratios and low rotational speeds, the U/C value will be low and the rotor will experience high values of positive incidence at the inlet. The positive incidence causes high blade loading resulting in additional tip leakage flow in the rotor as well as flow separation on the suction surface of the blade. An experimental assessment has been performed on a scaled automotive VGS (variable geometry system). Three different stator vane positions have been analyzed: minimum, 25%, and maximum flow position. The first tests were to establish whether positioning the endwall clearance on the hub or shroud side of the stator vanes produced a different impact on turbine efficiency. Following this, a back swept rotor was tested to establish the potential gains to be achieved during off-design operation. A single passage CFD model of the test rig was developed and used to provide information on the flow features affecting performance in both the stator vanes and turbine. It was seen that off-design performance was improved by implementing clearance on the hub side of the stator vanes rather than on the shroud side. Through CFD analysis and tests, it was seen that two leakage vortices form, one at the leading edge and one after the spindle of the stator vane. The vortices affect the flow angle at the inlet to the rotor, in the hub region. The flow angle is shifted to more negative values of incidence, which is beneficial at the off-design conditions but detrimental at the design point. The back swept rotor was tested with the hub side stator vane clearance configuration. The efficiency and MFR were increased at the minimum and 25% stator vane position. At the design point, the efficiency and MFR were decreased. The CFD investigation showed that the incidence angle was improved at the off-design conditions for the back swept rotor. This reduction in the positive incidence angle, along with the improvement caused by the stator vane tip leakage flow, reduced flow separation on the suction surface of the rotor. At the design point, both the tip leakage flow of the stator vanes and the back swept blade angle caused flow separation on the pressure surface of the rotor. This resulted in additional blockage at the throat of the rotor reducing MFR and efficiency.
Resumo:
The long-term success of arterial bypass grafting with autologous saphenous veins is limited by neointimal hyperplasia (NIH), which seemingly develops preferentially at sites where hydrodynamic wall shear is low. Placement of a loose-fitting, porous stent around end-to-end, or end-to-side, autologous saphenous vein grafts on the porcine common carotid artery has been found significantly to reduce NIH, but the mechanism is unclear. In a preliminary study, we implanted autologous saphenous vein grafts bilaterally on the common carotid arteries of pigs, placing a stent around one graft and leaving the contralateral graft unstented. At sacrifice 1 month post implantation, the grafts were pressure fixed in situ and resin casts were made. Unstented graft geometry was highly irregular, with non-uniform dilatation, substantial axial lengthening, curvature, kinking, and possible long-pitch helical distortion. In contrast, stented grafts showed no major dilatation, lengthening or curvature, but there was commonly fine corrugation, occasional slight kinking or narrowing of segments, and possible long-pitch helical distortion. Axial growth of grafts against effectively tethered anastomoses could account for these changes. CFD studies are planned, using 3D MR reconstructions, on the effects of graft geometry on the flow. Abnormality of the flow could favour the development of vascular pathology, including NIH.