144 resultados para Nitrate removal
Resumo:
The objective of this paper is to outline how stable isotope techniques can contribute to the elucidation of the sources and the fate of riverine nitrate and sulphate in watershed studies. The example used is the Oldman River Basin (OMRB), located in southern Alberta (Canada). Increasing sulphate concentrations and decreasing d34S values along the flowpath of the Oldman River indicate that oxidation of pyrite in tills is a major source of riverine sulphate in the agriculturally used portion of the OMRB. Chemical and isotopic data showed that manure-derived nitrogen contributes significantly to the increase in nitrate concentrations in the Oldman River and its tributaries draining agricultural land. It is suggested that hydrological conditions control agricultural return flows to the surface water bodies in southern Alberta and impart significant seasonal variations on concentrations and isotopic compositions of riverine nitrate. Combining isotopic, chemical, and hydrometric data permitted us to estimate the relative contribution of major sources to the total solute fluxes. Hence, we submit that isotopic measurements can make an important contribution to the identification of nutrient and pollutant sources and to river basin management.
Resumo:
Concentrations and isotopic compositions of NO-3 from the Oldman River (OMR) and some of its tributaries (Alberta, Canada) have been determined on a monthly basis since December 2000 to assess temporal and spatial variations of riverine NO-3 sources within the OMR basin. For the OMR sites, NO-3 -N concentrations reached up to 0.34 mg L-1, d15N-NO-3 values varied between –0.3 and +13.8‰, and d18O-NO-3 values ranged from –10.0 to +5.7‰. For the tributary sites, NO-3 -N concentrations were as high as 8.81 mg L-1, d15N-NO-3 values varied between –2.5 and +23.4‰, and d18O-NO-3 values ranged from –15.2 to +3.4‰. Tributaries in the western, relatively pristine forested part of the watershed add predominantly NO-3 to the OMR with d15N-NO-3 indicative of soil nitrification. In contrast, tributaries in the eastern agriculturally-urban-industrially-used part of the basin contribute NO-3 with d15N-NO-3 values of about +16‰ indicative of manure and/or sewage derived NO-3. This difference in d15N-NO-3 values of tributaries was found to be independent of the season, but rather indicates a spatial change in the NO-3 source, which correlates with land use changes within the OMR basin. As a consequence of tributary influx, d15N-NO-3 values in the Oldman River increased from +6‰ in the downstream direction (W to E), although [NO-3 -N] increased only moderately (generally
Resumo:
Surface water and deep and shallow groundwater samples were taken from selected parts of the Grand-Duchy of Luxembourg to determine the isotopic composition of nitrate and sulfate, in order to identify sources and/or processes affecting these solutes. Deep groundwater had sulfate concentrations between 20 and 40 mg/L, d34Ssulfate values between -3.0 and -20.0‰, and d18Osulfate values between +1.5 and +5.0‰; nitrate was characterized by concentrations varying between
Resumo:
Fucus and Laminaria species, dominant seaweeds in the intertidal and subtidal zones of the temperate North Atlantic, experience tidal cycles that are not synchronized with light:dark (L:D) cycles. To investigate how nutrient assimilation is affected by light cycles, the activity of nitrate reductase (NR) was examined in thalli incubated in outdoor tanks with flowing seawater and natural L:D cycles. NR activity in Laminaria digitata (Huds.) Lamour. showed strong diel patterns with low activities in darkness and peak activities near midday. This diel pattern was controlled by light but not by a circadian rhythm. In contrast, there was no diel variation in NR activity in Fucus serratus L., F. vesiculosus (L.) Lamour., and F. spiralis L. either collected directly from the shore or maintained in the outdoor tanks. In laboratory cultures, transfer to continuous darkness suppressed NR activity in L. digitata, but not in F. vesiculosus; continuous light increased NR activity in L. digitata but decreased activity in F. vesiculosus. Furthermore, 4 d enrichment with ammonium (50 mu mol . L-1 pulses), resulted in NR activity declining by > 80% in L. digitata, but no significant changes in F. serratus. Seasonal differences in maximum NR activity were present in both genera with activities highest in late winter and lowest in summer. This is the first report of NR activity in any alga that is not strongly regulated by light and ammonium. Because light and tidal emersion do not always coincide, Fucus species may have lost the regulation of NR by light that has been observed in other algae and higher plants.
Resumo:
The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.
Resumo:
CO dissociation and O removal (water formation) are two important processes in the Fischer-Tropsch synthesis. In this study, both processes are studied on the flat and stepped Co(0 0 0 1) using density functional theory. It is found that (i) it is difficult for CO to dissociate on the flat Co(0 0 0 1) due to the high barrier of 1.04 eV relative to the CO molecule in the gas phase; (ii) the stepped Co(0 0 0 1) is much more favoured for CO dissociation; (iii) the first step in water formation, O + H --> OH, is unlikely to occur on the flat Co(0 0 0 1) due to the high barrier of 1.72 eV, however, this reaction can become feasible on steps where the barrier is reduced to 0.73 eV; and (iv) the barrier in the second step, OH + H --> H2O, on steps is higher than that on the flat surface. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The feasibility of using diatomite for the removal of the problematic reactive dyes as well as basic dyes from textile wastewater was investigated. Methylene blue, Cibacron reactive black and reactive yellow dyes were considered. Physical characteristics of diatomite such as pH(solution), pH(ZPC), surface area, Fourier transform infrared, and scanning electron microscopy were investigated. The surface area of diatomite was found to be 27.80 m(2) g(-1) and the pH(ZPC) occurred around pH of 5.4. The results indicated that the surface charge of diatomite decreased as the pH of the solution increased with the maximum methylene blue removal from aqueous solution occurring at basic pH of around (1011). Adsorption isotherms of diatomite with methylene blue, hydrolysed reactive black and yellow dyes were constructed at different pH values, initial dye concentrations and particle sizes. The experimental results were fitted to the Langmuir, Freundlich, and Henry models. The study indicated that electrostatic interactions play an important role in the adsorption of dyes onto diatomite. A model of the adsorption mechanism of methylene blue onto diatomite is proposed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This report describes a novel technology for arsenic removal from groundwater. The work was carried out in India in collaboratio with three Indian and three European partners. European partners include Leiden University of the Netherlands and Stuttgart University of Germany. The work was funded by The World Bank.