107 resultados para Ni-P alloy film


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alloying metals is often used as an effective way to enhance the reactivity of surfaces. Aiming to shed light on the effect of alloying on reaction mechanisms, we carry out a comparative study of CO oxidation on Cu3Pt(111), Pt(111), and Cu(111) by means of density functional theory calculations. Alloying effects on the bonding sites and bonding energies of adsorbates, and the reaction pathways are investigated. It is shown that CO preferentially adsorbs on an atop site of Pt and O preferentially adsorbs on a fcc hollow site of three Cu atoms on Cu3Pt(111). It is also found that the adsorption energies of CO (or O-a) decreases on Pt (or Cu) on the alloy surface with respect to those on pure metals. More importantly, having identified the transition states for CO oxidation on those three surfaces, we found an interesting trend for the reaction barrier on the three surfaces. Similar to the adsorption energies, the reaction barrier on Cu3Pt possesses an intermediate value of those on pure Pt and Cu metals. The physical origin of these results has been analyzed in detail. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silver thin films were modified using a novel plasma modification process for the development of thin-film silver-silver chloride reference electrodes. The surface, physical, and electrochemical properties of these electrodes were investigated by atomic force microscopy, thickness and resistivity measurement techniques, as well as impedance spectroscopy and potentiometry. After plasma treatment, thin-film growth was observed and the electrodes, in general, exhibited low interface impedance and a roughened surface. Evidence of a complex surface reorganization was found. Correlating plasma conditions with film properties suggested that increasing pressure and exposure duration increased species availability, therefore governing the reaction rates, while input power appeared to influence the type of surface chemical reactions. Results also indicated that Ar/Cl-2 mixtures should be employed rather than pure chlorine plasmas. (C) 2002 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. In this paper we report electron impact collision strengths and excitation rates for transitions among the lowest 89 levels of Ni XIX.
Methods. The Dirac atomic R-matrix code (DARC) is adopted for the calculations of collision strengths and subsequently the effective collision strengths.
Results. Collision strengths for resonance transitions among 89 levels arising from the (1s2) 2s22p6, 2s22p53$\ell$, 2s2p63$\ell$, 2s22p54$\ell$, and 2s2p64$\ell$ configurations of Ni XIX are reported over a wide energy range below 250 Ryd. Additionally, effective collision strengths for all 3916 transitions among the 89 levels are listed over a wide temperature range below 107 K. Comparisons are made among different calculations and the accuracy of the data is assessed. Finally, comparisons between theoretical and experimental intensity ratios of some prominent lines of Ni XIX are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present calculations of electron impact excitation collision strengths for transitions among the 89 fine-structure levels of the 2S(2) 2p(,)(6) 2S(2) 2P(5) 3l, 2s(2)p(6) 3l, 2s(2) 2p(5) 4l, and 2s(2)p(6) 2l configurations of Ni XIX, for which flexible atomic code (FAC) has been adopted. Comparisons are made with the earlier available results in the literature, and the anomalies observed have been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peat has been widely used as a low cost adsorbent to remove a variety of materials including organic compounds and heavy metals from water. Various functional groups in lignin allow such compounds to bind on active sites of peat. The adsorption of Cu2+ and Ni2+ from aqueous solutions on Irish peat moss was studied both as a pure ion and from their binary mixtures under both equilibrium and dynamic conditions in the concentration range of 5–100 mg/L. The pH of the solutions containing either Cu2+ or Ni2+ was varied over a range of 2–8. The adsorption of Cu2+ and Ni+2 on peat was found to be pH dependent. The adsorption data could be fitted to a two-site Langmuir adsorption isotherm and the maximum adsorption capacity of peat was determined to be 17.6 mg/g for Cu2+ and 14.5 mg/g for Ni2+ at 298 K when the initial concentration for both Cu2+ and Ni2+ was 100 mg/L, and the pH of the solution was 4.0 and 4.5, respectively. Column studies were conducted to generate breakthrough data for both pure component and binary mixtures of copper and nickel. Desorption experiments showed that 2 mM EDTA solution could be used to remove all of the adsorbed copper and nickel from the bed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ammonium chloride/mercuric chloride mixtures (molar ratio 2: 1) react at 350degreesC with Monel (Cu68Ni32) to yield (NH4)NiCl3 and mercury and copper amalgam, respectively. With larger amounts of (NH4)Cl in the reaction mixture, dark green (NH4)(2)(NH3)(x)[Ni(NH3)(2)Cl-4] (x approximate to 0.77) (1) is also formed as a main product. Light blue crystals of the mixed-valent copper(I,II) chloride (NH4)(5)Cl-5[CuCl2][CuCl4] (2) were obtained as a minor byproduct from a 4:1 reaction mixture. The crystal structures were determined from single crystal X-ray data; (1): tetragonal, I4/mmm, a = 770.9(1), e = 794.2(2) pm, 190 reflections, R-1 = 0.0263; (2): tetragonal, I4/mcm, a = 874.8(1), c = 2329.2(3) pm, 451 reflections, R-1 = 0.0736. In (1) Ni2+ resides in trans-[Ni(NH3)(2)Cl-4](2-) octahedra, and in (2) copper(l) is linearly two-coordinated in ECUC121- and copper(II) resides in a flattened tetrahedron [CuCl4](2-) with a tetrahedricity of 89%. (C) 2001 Elsevier Science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron impact excitation collision strengths are required for the analysis and interpretation of stellar observations. This calculation aims to provide fine structure effective collision strengths for the Ni XVII ion using a method which includes contributions from resonances. A DARC calculation has been performed, involving 37 J pi states. The effective collision strengths are calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. The non-zero effective collision strengths for transitions between the fine structure levels are given for electron temperatures (T(e)) in the range log(10) T(e)(K) = 4.5 - 8.5. Data for several transitions from the ground state are discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Considerable demand exists for electron excitation data for Ni ii, since lines from this abundant ion are observed in a wide variety of laboratory and astrophysical spectra. The accurate theoretical determination of these data can present a significant challenge however, due to complications arising from the presence of an open 3d-shell in the description of the target ion. Aims. In this work we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact ex- citation of Ni ii. Attention is concentrated on the 153 forbidden fine-structure transitions between the energetically lowest 18 levels of Ni ii. Effective collision strengths have been evaluated at 27 individual electron temperatures ranging from 30–100 000 K. To our knowledge this is the most extensive theoretical collisional study carried out on this ion to date.Methods. The parallel R-matrix package RMATRX II has recently been extended to allow for the inclusion of relativistic effects. This suite of codes has been utilised in the present work in conjunction with PSTGF to evaluate collision strengths and effective collision strengths for all of the low-lying forbidden fine-structure transitions. The following basis configurations were included in the target model – 3d9 , 3d8 4s, 3d8 4p, 3d7 4s2 and 3d7 4s4p – giving rise to a sophisticated 295 j j-level, 1930 coupled channel scattering problem. Results. Comprehensive comparisons are made between the present collisional data and those obtained from earlier theoretical evaluations. While the effective collision strengths agree well for some transitions, significant discrepancies exist for others.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is m(min) = 8.5(-1.5)(+1) M-circle dot and the maximum mass for II-P progenitors is m(max) = 16.5 +/- 1.5 M-circle dot, assuming a Salpeter initial mass function holds for the progenitor population (in the range Gamma = -1.35(-0.7)(+0.3)). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25 M-circle dot and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 M-circle dot. The reason we have not detected any high-mass red supergiant progenitors above 17 M-circle dot is unclear, but we estimate that it is statistically significant at 2.4 sigma confidence. Two simple reasons for this could be that we have systematically underestimated the progenitor masses due to dust extinction or that stars between 17-25 M-circle dot produce other kinds of SNe which are not II-P. We discuss these possibilities and find that neither provides a satisfactory solution. We term this discrepancy the 'red supergiant problem' and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. We compare the Ni-56 masses ejected in the SNe to the progenitor mass estimates and find that low-luminosity SNe with low Ni-56 production are most likely to arise from explosions of low-mass progenitors near the mass threshold that can produce a core-collapse.