54 resultados para Muscles -- Physiology
Biodegradation by members of the genus Rhodococcus: Biochemistry, physiology, and genetic adaptation
Resumo:
We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P <0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P <0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P <0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P <0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.
Resumo:
Premature infants are at risk for adverse motor outcomes, including cerebral palsy and developmental coordination disorder. The purpose of this study was to examine the relationship of antenatal, perinatal, and postnatal risk factors for abnormal development of the corticospinal tract, the major voluntary motor pathway, during the neonatal period. In a prospective cohort study, 126 premature neonates (24-32 weeks' gestational age) underwent serial brain imaging near birth and at term-equivalent age. With diffusion tensor tractography, mean diffusivity and fractional anisotropy of the corticospinal tract were measured to reflect microstructural development. Generalized estimating equation models examined associations of risk factors on corticospinal tract development. The perinatal risk factor of greater early illness severity (as measured by the Score for Neonatal Acute Physiology-II [SNAP-II]) was associated with a slower rise in fractional anisotropy of the corticospinal tract (P = 0.02), even after correcting for gestational age at birth and postnatal risk factors (P = 0.009). Consistent with previous findings, neonatal pain adjusted for morphine and postnatal infection were also associated with a slower rise in fractional anisotropy of the corticospinal tract (P = 0.03 and 0.02, respectively). Lessening illness severity in the first hours of life might offer potential to improve motor pathway development in premature newborns.
Resumo:
Smooth muscle cell (SMC) differentiation is a critical process during cardiovascular formation and development, but the underlying molecular mechanism remains unclear.
Resumo:
Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ 3-fold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring anatomical characteristics of the soleus muscle, its fiber numbers and their cross sectional area (CSA), by analysing transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were 4-to-8 times larger compared to BEL strain. In sub-strain BEH+/+, mutant myostatin was replaced with a wild type allele, however, BEH+/+muscles still were 2-to-4 times larger compared to the BEL strain. BEH soleus contained 2-times more (P<0.0001) and 2-times larger in CSA (P<0.0001) fibers compared to BEL strain. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (chromosome 1) and four suggestive (chromosomes 3, 4, 6 and 9) muscle weight QTLs were mapped in 21-day old F2 intercross (n=296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL, however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed (P<0.1) genes and 45,673 SNPs and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits, genomic and gene expression differences between BEH and BEL strains provide a promising model for the search of genes involved in muscle growth and musculoskeletal morphogenesis.
Resumo:
The understanding of how mutations of the cystic fibrosis gene results in recurrent infection and the development of bronchiectasis is now well established. This review examines aspects of lung pathophysiology specifically, abnormal mucociliary clearance, inflammation and infection which are the basis of the daily symptoms encountered by people with cystic fibrosis. Other components of the lung epithelium and their potential contribution to cystic fibrosis disease are discussed. Therapeutic interventions which aim to target abnormal mucociliary clearance are summarized. © 2011 Elsevier Ltd.
Resumo:
While bradykinin has been identified in the skin secretions from several species of amphibian, bradykinin-related peptides (BRPs) are more common constituents. These peptides display a plethora of primary structural variations from the type peptide which include single or multiple amino acid substitutions, N- and/or C-terminal extensions and post-translational modifications such as proline hydroxylation and tyrosine sulfation. Such modified peptides have been reported in species from many families, including Bombinatoridae, Hylidae and Ranidae. The spectrum of these peptides in a given species is thought to be reflective of its predator profile from different vertebrate taxa. Here we report the isolation of BRPs and parallel molecular cloning of their respective biosynthetic precursor-encoding cDNAs from the skin secretions of the Mexican leaf frog (Pachymedusa dacnicolor), the Central American red-eyed leaf frog (Agalychnis callidryas) and the South American orange-legged leaf frog (Phyllomedusa hypochondrialis). Additionally, the eight different BRPs identified were chemically synthesized and screened for bioactivity using four different mammalian smooth muscle preparations and their effects and rank potencies were found to be radically different in these with some acting preferentially through bradykinin B1-type receptors and others through B2-type receptors.
Resumo:
Background: There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function.
Objective/hypothesis: To establish whether sigmoid fits provide a reliable basis upon which to characterize the input–output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC).
Methods: A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation.
Results: The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS).
Conclusion(s): The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation.
Resumo:
Many pathological conditions exist where tissues exhibit hypoxia or low oxygen tension. Hypoxic hypoxia arises when there is a reduction in the amount of oxygen entering the blood and occurs in healthy people at high altitude. In 1946, research sponsored by the United States Navy led to the collection and subsequent publication of masses of data demonstrating the physiological consequences and adaptations of ascent to high altitude. This article describes how a figure from a 1947 paper from the American Physiological Society Legacy collection (Houston CS, Riley RL. Respiratory and circulatory changes during acclimatization to high altitude. Am J Physiol 149: 565-588) may be used to allow students to review their understanding of some of the generalized effects of hypoxia on the body. In particular, this figure summarizes some of the adaptive responses that take place in the oxygen transport system as a consequence of prolonged hypoxia.
Resumo:
The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.
Resumo:
A precise knowledge of the sources of the arterial and neural supply of the sternohyoid (SH), sternothyroid (STM), and superior belly of omohyoid (OM) is of value to surgeons using the infrahyoid muscles in reconstruction procedures of the head and neck. This study was designed to define the anatomical bases of the variable sources of the arterial and neural supply of these muscles. Fourteen cadavers were unilaterally dissected in the neck region, and the arterial pedicles of these muscles were followed and accurate measurements were taken. For the SH, two arterial pedicles (superior and inferior) originated from the superior thyroid artery ST and supplied the muscle in 57.1% of cases. The inferior pedicle was absent in 42.9% of cases. As regards the STM, one arterial pedicle from the ST supplied its upper end by multiple branches in 57.1% of cases. In 14.3% of cases, branches from the inferior thyroid artery (IT) supplied the STM in addition to its supply from the ST. As regards the OM, two arterial pedicles originated from the ST and supplied its upper and lower ends in 57.1% of cases. The main artery from the ST to the superior belly of OM entered at its superior portion. The ansa cervicalis (AC) innervated the infrahyoid muscles. SH usually had a double nerve supply. In 57.1% of cases, its superior part was innervated by the nerve to the superior belly of OM. Its inferior part received branches from the AC. In 35.7% of cases, its superior part received direct branches from the AC. As regards the STM, in (71.4%) of cases, a common trunk arose from the loop and supplied the inferior part of both the SH and STM. The nerve supply to the superior belly of OM originated from the AC below the loop in 64.3% of cases. These data will be useful for preserving the neuro-vascular supply of the infrahyoid muscles during flap preparation.