65 resultados para MOLTEN-SALT


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase structure evolution of high impact polypropylene copolymer (IPC) during molten-state annealing and its influence on crystallization behaviour were studied. An entirely different architecture of the IPC melt was observed after being annealed, and this architecture resulted in variations of the crystallization behaviour. In addition, it was found that the core-shell structure of the dispersed phase was completely destroyed and the sizes of the dispersed domains increased sharply after being annealed at 200 degrees C for 200 min. Through examination of the coarseness of the phase morphology using phase contrast microscopy (PCM), it was found that a co-continuous structure and an abnormal 'sea-island' structure generally appeared with an increase in annealing time. The original matrix PP component appeared as a dispersed phase, whereas the copolymer components formed a continuous 'sea-island' structure. This change is ascribed to the large tension induced by solidification at the phase interface and the great content difference between the components. When the temperature was reduced the structure reverted to its original form. With increasing annealing time, the spherulite profiles became more defined and the spherulite birefringence changed from vague to clear. Overall crystallization rates and nucleation densities decreased, but the spherulite radial growth rates remained almost constant, indicating that molten-state annealing mainly affects the nucleation ability of IPC, due to a coarsened microstructure and decreased interface area. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrosynthesis methods using molten salts are suggested for obtaining a new catalytic system based on the Mo2C/Mo composition for the water gas shift reaction. The coatings obtained by the discharge of the carbonate ion on a molybdenum substrate and by the simultaneous reduction of the electroactive species MoO42 and CO32- are catalytically more active than bulk Mo2C or the commercial catalyst Cu-ZnO-Al2O3 by one and three orders of magnitude, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atmosphere in the 850-1050 degrees C temperature range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide (MoSi2, Mo5Si3) phases, formed on the surface of Mo plates, was confirmed by X-ray diffraction analysis. The distribution of elements was determined by means of wavelength dispersive spectroscopy (WDS) spectra of the surface and line-scan analyses from surface to interior. Depending on the process type (diffusional or electrochemical) and temperature, the thickness of the protective layers formed on the substrate ranged from 6 to 40 gm. The oxidation resistance of obtained phases was investigated in an air-water mixture in the temperature range of 500-700 degrees C for a period up to 400 h. An improved oxidation behavior of coated plates in comparison with that of pure molybdenum was observed. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha(1)-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (Porter et al., 1996). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha(1)-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha(1b)-AR and in Rat-1 fibroblasts stably transfected with the human alpha(1a)-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha(1)-AR agonists and this effect was fully inhibited by the alpha(1)-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha(1)-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha(1)-ARs with a K-i of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha(1)-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha(1)-AR activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been accepted that thermal and moisture regimes within stonework exert a major influence upon patterns of salt movement and, subsequently, the type and severity of salt-induced decay. For example, it is suggested that slow drying is more likely to bring dissolved salts to the surface, whereas rapid drying could result in the retention of some salt at or near the frequent wetting depth. In reality however, patterns of heating, cooling and surface wetting regimes that drive them – are complex and inconsistent responses to a wide range of environmental controls. As a first step to understanding the complexity of these relationships, this paper reports a series of experiments within a climatic cabinet designed to replicate the effects of short-term temperature fluctuations on the surface and sub-surface temperature regimes of a porous Jurassic limestone, and how they are influenced by surface wetting, ambient temperature and surface airflow. Preliminary results confirm the significance of very steep temperature/stress gradients within the outer centimetre or less of exposed stone under short-duration cycles of heating and cooling. This is important because this is the zone in which many stone decay processes, particularly salt weathering, operate, these processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example,
trigger these fluctuations on numerous occasions over a day. The data also indicate that there are complex patterns of temperature reversal with depth that are influenced in their intensity and location by surface wetting and moisture penetration, airflow across the surface and ambient air temperature. The presence of multiple temperature reversals and their variation over the course of heating and cooling phases belies previous assumtions of smooth, exponential increases and decreases in subsurface temperatures in response, for example to diurnal patterns of heating and cooling

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A replicated field plot experiment was carried out in Northern Ireland in 1996 with flax, cv Ariane, and linseed, cv Flanders, each grown at seed rates of 500, 1000 and 1500 seeds/m(2), in which a comparison was made between netting of the standing crop, following desiccation by the trimesium salt of glyphosate (Touchdown, Zeneca Ltd.), and water or dew retting of the pulled crop. Application at 4 litres/ha on 9 August, 33 days after the mid-point of flowering (MPF), achieved both desiccation and partial retting of the crop within 14 days. Over 16 % clean long fibre was extracted by scutching the stand-netted flax straw, yielding 800 kg/ha fibre, while water retting achieved 20 extraction and 980 kg/ha yield and dew netting 8.5 % and 420 kg/ha respectively. The dew retting was uneven, resulting in high losses during fibre extraction, while water retting for 7 days at 25 degreesC did not achieve complete retting resulting in a high content of woody fragments in the fibre. Fibre yields increased by almost 50 % with the high v. low seed rate. Linseed was less well retted than flax and contained higher levels of impurity in the extracted long fibre which, after retting, yielded 120 to 310 kg/ha at extraction rates of 2.9 % to 7.5 %.

In a second experiment in 1998 flax cvs. Viola and Evelyn were treated with the timesium salt of glyphosate at rates of 2, 4 or 6 litres/ha 10, 20, 30 or 40 days after MPF on 5 July. Viola desiccated satisfactorily at all spray dates with 4 and 6 litres/ha glyphosate. The 20-day treatment desiccated more slowly than the 30-day and the 2 litres/ha rate did not achieve complete desiccation, but the trimesium salt of glyphosate achieved better desiccation at this timing than that found in earlier studies with the original form of glyphosate. Evelyn desiccated more slowly and less evenly than Viola particularly at the 20-day and 40-day timings. Spraying at MPF + 10 days interrupted early development of the seed and fibre significantly reducing yields. Due to slower desiccation the 20-day timing was no better than the 30-day, which was well retted by harvest 44 days after spraying, and gave the highest yield of clean long fibre. The spraying 40 days after MPF was considered too late in the season to be of practical use. It was concluded that retting of standing flax following desiccation with the trimesium salt of glyphosate was more effective than with the earlier formulation and that resting of the standing crop could achieve equivalent or better retting with similar fibre yields to traditional retting methods. The optimum spray timing was found to be about 30 days after MPF with 4 or 6 litres/ha, the lower rate being adequate for glyphosate responsive varieties such as Viola.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone facades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion
relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.