103 resultados para MEAN VECTOR


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scale invariant feature transform (SIFT) based mean shift algorithm is presented for object tracking in real scenarios. SIFT features are used to correspond the region of interests across frames. Meanwhile, mean shift is applied to conduct similarity search via color histograms. The probability distributions from these two measurements are evaluated in an expectation–maximization scheme so as to achieve maximum likelihood estimation of similar regions. This mutual support mechanism can lead to consistent tracking performance if one of the two measurements becomes unstable. Experimental work demonstrates that the proposed mean shift/SIFT strategy improves the tracking performance of the classical mean shift and SIFT tracking algorithms in complicated real scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new hierarchical learning structure, namely the holistic triple learning (HTL), for extending the binary support vector machine (SVM) to multi-classification problems. For an N-class problem, a HTL constructs a decision tree up to a depth of A leaf node of the decision tree is allowed to be placed with a holistic triple learning unit whose generalisation abilities are assessed and approved. Meanwhile, the remaining nodes in the decision tree each accommodate a standard binary SVM classifier. The holistic triple classifier is a regression model trained on three classes, whose training algorithm is originated from a recently proposed implementation technique, namely the least-squares support vector machine (LS-SVM). A major novelty with the holistic triple classifier is the reduced number of support vectors in the solution. For the resultant HTL-SVM, an upper bound of the generalisation error can be obtained. The time complexity of training the HTL-SVM is analysed, and is shown to be comparable to that of training the one-versus-one (1-vs.-1) SVM, particularly on small-scale datasets. Empirical studies show that the proposed HTL-SVM achieves competitive classification accuracy with a reduced number of support vectors compared to the popular 1-vs-1 alternative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do the predicted climatic changes (IPCC, 2007) for the next century compare in magnitude and rate to those that Earth has previously encountered? Are there comparable intervals of rapid rates of temperature change, sea-level rise and levels of atmospheric CO2 that can be used as analogues to assess possible biotic responses to future change? Or are we stepping into the great unknown? This perspective article focuses on intervals in time in the fossil record when atmospheric CO2 concentrations increased up to 1200 ppmv, temperatures in mid- to high-latitudes increased by greater than 4 ?C within 60 years, and sea levels rose by up to 3 m higher than present. For these intervals in time, case studies of past biotic responses are presented to demonstrate the scale and impact of the magnitude and rate of such climate changes on biodiversity. We argue that although the underlying mechanisms responsible for these past changes in climate were very different (i.e. natural processes rather than anthropogenic), the rates and magnitude of climate change are similar to those predicted for the future and therefore potentially relevant to understanding future biotic response. What emerges from these past records is evidence for rapid community turnover, migrations, development of novel ecosystems and thresholds from one stable ecosystem state to another, but there is very little evidence for broad-scale extinctions due to a warming world. Based on this evidence from the fossil record, we make four recommendations for future climate-change integrated conservation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional Time Division Multiple Access (TDMA) protocol provides deterministic periodic collision free data transmissions. However, TDMA lacks flexibility and exhibits low efficiency in dynamic environments such as wireless LANs. On the other hand contention-based MAC protocols such as the IEEE 802.11 DCF are adaptive to network dynamics but are generally inefficient in heavily loaded or large networks. To take advantage of the both types of protocols, a D-CVDMA protocol is proposed. It is based on the k-round elimination contention (k-EC) scheme, which provides fast contention resolution for Wireless LANs. D-CVDMA uses a contention mechanism to achieve TDMA-like collision-free data transmissions, which does not need to reserve time slots for forthcoming transmissions. These features make the D-CVDMA robust and adaptive to network dynamics such as node leaving and joining, changes in packet size and arrival rate, which in turn make it suitable for the delivery of hybrid traffic including multimedia and data content. Analyses and simulations demonstrate that D-CVDMA outperforms the IEEE 802.11 DCF and k-EC in terms of network throughput, delay, jitter, and fairness.