37 resultados para Liquid crystals


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The high temperature magnetic and structural properties of an amphiphilic iron(III) spin crossover complex are reported. Thermal cycling reveals a scan rate-dependent 20 K thermal hysteresis in the mT vs. T data close to room temperature. A fast scan rate is essential for the hysteresis but it is robust and reproducible after multiple thermal cycles. Differential scanning calorimetry and cross polarized microscopy are used to show that the magnetic switching aligns with a material state change from solid to ordered liquid phase on warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Hypothermia is a risk factor for increased mortality in children with severe acute malnutrition (SAM). Yet frequent temperature measurement remains unfeasible in under-resourced units in developing countries. ThermoSpot is a continuous temperature monitoring sticker designed originally for neonates. When applied to skin, its liquid crystals are designed to turn black with hypothermia and remain green with normothermia.

AIMS: To (i) estimate the diagnostic accuracy of ThermoSpots for detecting WHO-defined hypothermia (core temperature <35.5°C or peripheral temperature <35.0°C) in children with SAM and (ii) determine their acceptability amongst mothers.

METHODS: Children with SAM in a malnutrition unit in Malawi were enrolled during March-July 2010. The sensitivity and specificity of ThermoSpots were calculated by comparing the device colour against 'gold standard' rectal temperatures taken on admission and follow up peripheral temperatures taken until discharge. Guardians completed a questionnaire to assess acceptability.

RESULTS: Hypothermia was uncommon amongst the 162 children enrolled. ThermoSpot successfully detected the one rectal temperature and two peripheral temperatures recorded that met the WHO definition of hypothermia. Overall, 3/846 (0.35%) temperature measurements were in the WHO-defined hypothermia range. Interpreting the brown transition colour (between black and green) as hypothermia improved sensitivities. For milder hypothermia definitions, sensitivities declined (<35.4°C, 50.0%; <35.9°C, 39.2%). Specificity was consistently above 94%. From questionnaires, 40/43 (93%) mothers reported they were 90-100% happy with the device overall. Free-text answers revealed themes of "Skin Rashes", "User-satisfaction" and "Empowerment".

CONCLUSION: Although hypothermia was uncommon in this study, ThermoSpots successfully detected these episodes in malnourished children and were acceptable to mothers. Research in settings where hypothermia is common is needed to determine performance with certainty. Instructing users to act when the device's transition colour appears could improve accuracy. If reliable, ThermoSpots may offer simple, acceptable and continuous temperature measurement for high-burden areas and reduce the workload of over-stretched staff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enhanced optical properties of metal films periodically perforated with an array of sub-wavelength size holes have recently been widely studied in the field of surface plasmon optics. The ability to design the optical transmission of such nanostructures, which act as plasmonic crystals, by varying their geometrical parameters gives them great flexibility for numerous applications in photonics, opto-electronics, and sensing. Transforming these passive optical elements into devices that may be actively controlled has presented a new challenge. Here, we report on the realization of an electrically controlled nanostructured optical system based on the unique properties of surface plasmon polaritonic crystals in contact with a liquid crystal (LC) layer. We discuss the effect of LC layer modulation on the surface plasmon dispersion, the related optical transmission and the underlying mechanism. The reported effect may be used to achieve active spectral tuneability and switching in a wide range of applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solid-state polymorphism of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], has been investigated via low-temperature and high-pressure crystallisation experiments. The samples have been characterised by single-crystal X-ray diffraction, optical microscopy and Raman spectroscopy. The solid-state phase behaviour of the compound is confirmed and clarified with respect to previous phase diagrams. The structures of the previously reported gamma-form, which essentially exhibits a G'T cation conformation, as well as those of the elusive beta- and alpha-forms, are reported. Crystals of the beta-phase are twinned and the structure is heavily disordered; the cation conformation in this form is predominantly TT, though significant contributions from other less frequently encountered conformers are also observed at low temperature and high pressure. The cation conformation in the alpha-form is GT; the presence of the G'T conformer at 193 K in this phase can be eliminated on cooling to 100 K. Whilst X-ray structural data are overall in good agreement with previous interpretations based on Raman and NMR studies, they also reveal a more subtle interplay of intermolecular interactions, which give rise to a wider range of conformers than previously considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rigid organic iminospherand cages are rendered meltable by multiple alkylation; below their melting points they can take the form of permanently porous crystals, crystals unstable to desolvation or nonporous glassy solids depending on chain length and branching; melting points as low as 50 degrees C are observed and a fully Newtonian liquid phase is obtained above 80 degrees C. Thin glassy fibres can be drawn out from a molten phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of active pharmaceutical ingredients (APIs) into multicomponent solid forms (such as salts and co-crystals) or liquid forms (such as ionic liquids (ILs) or deep eutectic mixtures) is important in optimizing the efficacy and delivery of APIs. However, there is a current debate regarding the classification of these multicomponent systems based on their ionicity which could interfere with their consideration in important applications. Multicomponent systems of intermediate ionicity can show a combination of properties, leading to behavior that is neither strictly typical of either purely ionic or purely neutral compounds, nor easily described as intermediate between the two. In this perspective, we attempt to illustrate the problems in classifying multicomponent APIs based on one of two categories by discussing selected literature regarding solid and liquid multicomponent APIs and presenting the crystal structures of some relevant systems as case studies. It is clear that a focus on restrictive nomenclature carries with it the risk that a thorough examination of the physicochemical properties of the compounds will be overlooked.