181 resultados para Lexical-decision
Resumo:
During fights animals are expected to make a series of strategic decisions that involve interactions between information about the contest and the individual's nervous system that produce a change in behaviour. Biogenic monoamines such as serotonin ('5-HT') and dopamine are thought to prime decision-making centres for appropriate responses during aggressive interactions in crustaceans, and circulating levels vary both between individuals and during agonistic encounters. Aminergenic systems operate in diverse animal taxa and in this study we assayed circulating levels of S-HT and dopamine following shell fights in the common European hermit crab, Pagurus bernhardus. The two roles in these fights, attacker and defender, perform different activities but, in both, S-HT increased and dopamine declined in response to engaging in a fight. In defenders but not attackers, giving up was correlated with low 5-HT and dopamine. In attackers, motivation to initiate a fight was positively correlated with dopamine levels. Circulating monoamines are therefore involved in decision making during these aggressive encounters. (c) 2007 The Association for the Study of Animal Behaviour Published by Elsevier Ltd. All rights reserved.
Resumo:
Aggressive interactions between animals are often settled by the use of repeated signals that reduce the risk of injury from combat but are expected to be costly. The accumulation of lactic acid and the depletion of energy stores may constrain activity rates during and after fights and thus represent significant costs of signalling. We tested this by analysing the concentrations of lactate and glucose in the haemolymph of hermit crabs following agonistic interactions over the ownership of the gastropod shells that they inhabit. Attackers and defenders play distinct roles of sender and receiver that are fixed for the course of the encounter. Attackers perform bouts of 'shell rapping', which vary in vigour between attackers and during the course of the encounter, and are a key predictor of victory. In contrast to the agonistic behaviour of other species, we can quantify the vigour of fighting. We demonstrate, to our knowledge for the first time, an association between the vigour of aggressive activity and a proximate cost of signalling. We show that the lactate concentration in attackers increases with the amount of shell rapping, and that this appears to constrain the vigour of subsequent rapping. Furthermore, attackers, but not defenders, give up when the concentration of lactate is high. Glucose levels in attackers also increase with the amount of rapping they perform, but do not appear to influence their decision to give up. Defenders are more likely to lose when they have particularly low levels of glucose. We conclude that the two roles use different decision rules during these encounters.
Resumo:
What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools process optimizations or a combination Of Such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.