203 resultados para L cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: In an attempt to identify genes that are involved in resistance to SN38, the active metabolite of irinotecan (also known as CPT-11), we carried out DNA microarray profiling of matched HCT116 human colon cancer parental cell lines and SN38-resistant cell lines following treatment with SN38 over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-drug resistance (MDR) may compromise the successful management of haematological malignancies, impairing the effectiveness of chemotherapy. The P-glycoprotein (P-gp) drug efflux pump, encoded by the gene ABCB1 (MDR1), is the most widely studied component in MDR. A single nucleotide polymorphism (SNP) has been identified within ABCB1, rs1045642 (C3435T), which may alter P-gp substrate specificity and have an impact on the effectiveness of treatment, and hence overall survival (OS). We estimated the frequency of this SNP in the Northern Irish population and investigated its impact on the OS of patients with plasma cell myeloma (PCM). There was no significant difference in the frequency of rs1045642 between the PCM cohort and an age- and gender-matched control population. Findings within the PCM cohort suggest that rs1045642 genotype influences OS (p = 2 x 10(-2)). If confirmed in larger studies, these results suggest that genotyping rs1045642 may be a useful predictor of outcome in PCM and could indicate modified treatment modalities in certain individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phnA gene that encodes the carbon-phosphorus bond cleavage enzyme phosphonoacetate hydrolase is widely distributed in the environment, suggesting that its phosphonate substrate may play a significant role in biogeochemical phosphorus cycling. Surprisingly, however, no biogenic origin for phosphonoacetate has yet been established. To facilitate the search for its natural source we have constructed a whole-cell phosphonoacetate biosensor. The gene encoding the LysR-type transcriptional activator PhnR, which controls expression of the phosphonoacetate degradative operon in Pseudomonas fluorescens 23F, was inserted in the broad-host-range promoter probe vector pPROBE-NT, together with the promoter region of the structural genes. Cells of Escherichia coli DH5a that contained the resultant construct, pPANT3, exhibited phosphonoacetate-dependent green fluorescent protein fluorescence in response to threshold concentrations of as little as 0.5 µM phosphonoacetate, some 100 times lower than the detection limit of currently available non-biological analytical methods; the pPANT3 biosensor construct in Pseudomonas putida KT2440 was less sensitive, although with shorter response times. From a range of other phosphonates and phosphonoacetate analogues tested, only phosphonoacetaldehyde and arsonoacetate induced green fluorescent protein fluorescence in the E. coli DH5a (pPANT3) biosensor, although at much-reduced sensitivities (50 µM phosphonoacetaldehyde and 500 µM arsonoacetate).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] : Cholesterol (DOPS : Chol) liposomes for inhalation. Incubation of rSLPI with cathepsin L leads to complete loss of activity while encapsulation of rSLPI in DOPS : Chol liposomes retained 92.6 of its activity after challenge with cathepsin L. rSLPI-loaded liposomes were aerosolized efficiently using a standard nebulizer with a minimal loss of activity and stability. This formulation was biocompatible and encapsulation did not appear to diminish access to intracellular sites of action in in vitro cell culture studies. Liposome encapsulation of rSLPI therefore improves stability and potentially reduces the level and frequency of dosing required for therapeutic effect after inhalation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Adenosine 5′-monophosphate (AMP) has been shown to cause bronchoconstriction in atopic subjects but to have no effect on nonatopic nonasthmatic subjects. Endobronchial AMP challenge has previously been shown to cause mast cell mediator release in asthmatic subjects, but it is unknown whether a similar response occurs in atopic nonasthmatic and nonatopic nonasthmatic control subjects who have no response to inhalation AMP challenge.

Objective: This study examined the change in mast cell–derived products after endobronchial saline challenge and AMP challenge in subjects with and without a positive inhalation response to AMP.

Methods: Inhalation challenge with AMP challenge was performed in normal, atopic nonasthmatic, and atopic asthmatic subjects. Levels of mast cell mediators were measured after endobronchial adenosine challenge and after placebo endobronchial saline challenge.

Results: There were significant increases in histamine, tryptase, protein, and prostaglandin D2 levels (P = .02, P = .02, P = .01, and P = .01, respectively) after AMP challenge compared with after saline challenge in nonatopic nonasthmatic subjects. There was no significant increase in any mediator in either of the other 2 groups.

Conclusion: This study suggests dissociation between mediator release and bronchoconstriction in response to AMP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.