130 resultados para K most critical paths
Resumo:
Data from a series of controlled suction triaxial tests on samples of compacted speswhite kaolin were used in the development of an elasto–plastic critical state framework for unsaturated soil. The framework is defined in terms of four state variables: mean net stress, deviator stress, suction and specific volume. Included within the proposed framework are an isotropic normal compression hyperline, a critical state hyperline and a state boundary hypersurface. For states that lie inside the state boundary hypersurface the soil behaviour is assumed to be elastic, with movement over the state boundary hypersurface corresponding to expansion of a yield surface in stress space. The pattern of swelling and collapse observed during wetting, the elastic–plastic compression behaviour during isotropic loading and the increase of shear strength with suction were all related to the shape of the yield surface and the hardening law defined by the form of the state boundary. By assuming that constant–suction cross–sections of the yield surface were elliptical it was possible to predict test paths for different types of triaxial shear test that showed good agreement with observed behaviour. The development of shear strain was also predicted with reasonable success, by assuming an associated flow rule.
Resumo:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has been associated, sometimes controversially, with polymorphisms in a number of genes. Recently the butyrylcholinesterase K variant (BCHE K) allele has been shown to act in synergy with the apolipoprotein E epsilon4 (APOE epsilon4) allele to promote risk for AD. Most subsequent replicative studies have been unable to confirm these findings. We have conducted a case-control association study using a clinically well defined group of late onset AD patients (n=175) and age and sex matched control subjects (n=187) from the relatively genetically homogeneous Northern Ireland population to test this association. The BCHE genotypes of patients were found to be significantly different from controls (chi(2)=23.68, df=2, p
The influence of wear paths produced by hip replacement patients during normal walking on wear rates
Resumo:
Variation in wear paths is known to greatly affect wear rates in vitro, with multidirectional paths producing much greater wear than unidirectional paths. This study investigated the relationship between multidirectional motion at the hip joint, as measured by aspect ratio, sliding distance, and wear rate for 164 hip replacements. Kinematic input from three-dimensional gait analysis was used to determine the wear paths. Activity cycles were determined for a subgroup of 100 patients using a pedometer study, and the relationship between annual sliding distance and wear rate was analyzed. Poor correlations were found between both aspect ratio and sliding distance and wear rate for the larger group and between annual sliding distance and wear rate for the subgroup. However, patients who experienced a wear rate <0.08 mm/year showed a strong positive correlation between the combination of sliding distance, activity levels, and aspect ratio and wear rate (adjusted r2?=?55.4%). This group may represent those patients who experience conditions that most closely match those that prevail in simulator and laboratory tests. Although the shape of wear paths, their sliding distance, and the number of articulation cycles at the hip joint affect wear rates in simulator studies, this relationship was not seen in this clinical study. Other factors such as lubrication, loading conditions and roughness of the femoral head may influence the wear rate.
Resumo:
Over the years, build-operate-transfer (BOT) has continuously attracted research interests. Many studies on BOT have been carried out. Variations of BOT such as build-own-operate-transfer and build-own-operate have also been reported in some relevant publications. However, few investigations thus far have been conducted for transfer-operate-transfer (TOT). Therefore, there is a knowledge gap in this particular field. TOT is a new model that is suitable for existing infrastructure and public utility projects formerly funded by the governments and currently operated by state-owned enterprises. It refers to the transfer of a running public project to a foreign business or domestic private entity. Based on four case studies carried out in the Chinese water supply industry, this paper examines why there is an increasing need for TOT projects and identifies the distinctive features of TOT practice in China. This is followed by an introduction of a framework of critical success factors (CSFs) for TOT projects. The most important factors include project profitability, asset quality, fair risk allocation, competitive tendering, internal coordination within government, employment of professional advisors, corporate governance, and government supervision. The identification of CSFs provides a useful guidance to project parties planning to participate in TOT practice.
Resumo:
Neutrophils are activated by immunoglobulin G (IgG)-containing immune complexes through receptors that recognize the Fc portion of IgG (Fc gamma Rs). Here, we used genetic and pharmacological approaches to define a selective role for the beta isoform of phosphoinositide 3-kinase (PI3K beta) in Fc gamma R-dependent activation of mouse neutrophils by immune complexes of IgG and antigen immobilized on a plate surface. At low concentrations of immune complexes, loss of PI3K beta alone substantially inhibited the production of reactive oxygen species (ROS) by neutrophils, whereas at higher doses, similar suppression of ROS production was achieved only by targeting both PI3K beta and PI3K delta, suggesting that this pathway displays stimulus strength-dependent redundancy. Activation of PI3K beta by immune complexes involved cooperation between Fc gamma Rs and BLT1, the receptor for the endogenous proinflammatory lipid leukotriene B-4. Coincident activation by a tyrosine kinase-coupled receptor (Fc gamma R) and a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (BLT1) may provide a rationale for the preferential activation of the beta isoform of PI3K. PI3K beta-deficient mice were highly protected in an Fc gamma R-dependent model of autoantibody-induced skin blistering and were partially protected in an Fc gamma R-dependent model of inflammatory arthritis, whereas combined deficiency of PI3K beta and PI3K delta resulted in near-complete protection in the latter case. These results define PI3K beta as a potential therapeutic target in inflammatory disease.
Resumo:
The construction industry is inherently risky, with a significant number of accidents and disasters occurring, particularly on confined construction sites. This research investigates and identifies the various issues affecting successful management of health and safety in confined construction sites. The rationale is that identifying the issues would assist the management of health and safety particularly in inner city centres which are mostly confined sites. Using empiricism epistemology, the methodology was based on qualitative research approach by means of multiple case studies in three different geographical locations of Ireland, UK and USA. Data on each case study were collected through individual interviews and focus group discussion with project participants. The findings suggest that three core issues are the underlying factors affecting management of health and safety on confined construction sites. It include, (i) lack of space, (ii) problem of co-ordination and management of site personnel, and (iii) overcrowding of workplace. The implication of this is that project teams and their organisations should see project processes from a holistic point of view, as a unified single system, where quick intervention in solving a particular issue should be the norm, so as not to adversely affect interrelated sequence of events in project operations. Proactive strategies should be devised to mitigate these issues and may include detail project programming, space management, effective constructability review and efficient co-ordination of personnel, plant and materials among others. The value of this research is to aid management and operation of brownfield sites by identifying issues impacting on health and safety management in project process.
Resumo:
Introduction: Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our objective was to describe the professional group with responsibility for key ventilation and weaning decisions and to examine organizational characteristics associated with nurse involvement.
Methods: A multi-center, cross-sectional, self-administered survey was sent to nurse managers of adult intensive care units (ICUs) in Denmark, Germany, Greece, Italy, Norway, Switzerland, Netherlands and United Kingdom (UK). We summarized data as proportions (95% confidence intervals (CIs)) and calculated odds ratios (OR) to examine ICU organizational variables associated with collaborative decision making.
Results: Response rates ranged from 39% (UK) to 92% (Switzerland), providing surveys from 586 ICUs. Interprofessional collaboration (nurses and physicians) was the most common approach to initial selection of ventilator settings (63% (95% CI 59 to 66)), determination of extubation readiness (71% (67 to 75)), weaning method (73% (69 to 76)), recognition of weaning failure (84% (81 to 87)) and weaning readiness (85% (82 to 87)), and titration of ventilator settings (88% (86 to 91)). A nurse-to-patient ratio other than 1:1 was associated with decreased interprofessional collaboration during titration of ventilator settings (OR 0.2, 95% CI 0.1 to 0.6), weaning method (0.4 (0.2 to 0.9)), determination of extubation readiness (0.5 (0.2 to 0.9)) and weaning failure (0.4 (0.1 to 1.0)). Use of a weaning protocol was associated with increased collaborative decision making for determining weaning (1.8 (1.0 to 3.3)) and extubation readiness (1.9 (1.2 to 3.0)), and weaning method (1.8 (1.1 to 3.0)). Country of ICU location influenced the profile of responsibility for all decisions. Automated weaning modes were used in 55% of ICUs.
Conclusions: Collaborative decision making for ventilation and weaning was employed in most ICUs in all countries although this was influenced by nurse-to-patient ratio, presence of a protocol, and varied across countries. Potential clinical implications of a lack of collaboration include delayed adaptation of ventilation to changing physiological parameters, and delayed recognition of weaning and extubation readiness resulting in unnecessary prolongation of ventilation.
Resumo:
The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior, as opposed to the silicate-dominated composition found on Earth; the atmosphere can also differ from those in the Solar System. The solar C/O is 0.54 (ref. 3). Here we report an analysis of dayside multi-wavelength photometry of the transiting hot-Jupiter WASP-12b (ref. 6) that reveals C/O>=1 in its atmosphere. The atmosphere is abundant in CO. It is depleted in water vapour and enhanced in methane, each by more than two orders of magnitude compared to a solar-abundance chemical-equilibrium model at the expected temperatures. We also find that the extremely irradiated atmosphere (T>2,500K) of WASP-12b lacks a prominent thermal inversion (or stratosphere) and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.
Resumo:
Scission of a supramolecular polymer-metal complex can be carried out using collapsing cavitation bubbles created by ultrasound. Although the most plausible scission mechanism of the coordinative bonds is through mechanical force, the influence of radicals and high hot-spot temperatures on scission has to be considered. A silver(I)-N-heterocyclic carbene complex was exposed to 20 kHz ultrasound in argon, nitrogen, methane, and isobutane saturated toluene. Scission percentages were almost equal under argon, nitrogen, and methane. Radical production differs by a factor of 10 under these gases, indicating that radical production is not a significant contributor to the scission process. A model to describe the displacement of the bubble wall, strain rates, and temperature in the gas shows that critical strain rates for coil-to-stretch transition, needed for scission, are achieved at reactor temperatures of 298 K, an acoustic pressure of 1.2 x 10(5) Pa, and an acoustic frequency of 20 kHz. Lower scission percentages were measured under isobutane, which also shows lower strain rates in model simulations. The activation of the polymer-metal complexes in toluene under the influence of ultrasound occurs through mechanical force.