59 resultados para In vitro ACE inhibitory activity
Resumo:
Isoflavones are plant compounds, proposed to have health benefits in a variety of human diseases, including coronary heart disease and endocrine-responsive cancers. Their physiological effects include possible antioxidant activity, therefore suggesting a role for isoflavones in the prevention of male infertility. The aim of this study was to test the antioxidant effects of the isoflavones genistein and equol on sperm DNA integrity, assessed in vitro after hydrogen peroxide-mediated damage, using the cornet assay. Pre-treatment with genistein or equol at doses of 0.01-100 mumol/l significantly protected sperm DNA against oxidative damage. Both ascorbic acid (10-600 mumol/l) and alpha-tocopherol (1-100 mumol/l) also protected. Compared with ascorbic acid and alpha-tocopherol, added at physiological concentrations, genistein was the most potent antioxidant, followed by equol, ascorbic acid, and alpha-tocopherol. Genistein and equol added in combination were more protective than when added singly. Based on these preliminary data, which are similar to those observed previously in lymphocytes, these compounds may have a role to play in antioxidant protection against male infertility.
Resumo:
Ligand-induced activation of peroxisome proliferator-activated receptor gamma (PPAIR gamma) inhibits proliferation in cancer cells in vitro and in vivo; however, the downstream targets remain undefined. We report the identification of a peroxisome proliferator response element in the promoter region of the Na+/ H transporter gene NHE1, the overexpression of which has been associated with carcinogenesis. Exposure of breast cancer cells expressing high levels of PPAR gamma to its natural and synthetic agonists resulted in downregulation of NHE1 transcription as well as protein expression. Furthermore, the inhibitory effect of activated PPAR gamma on tumor colony-forming ability was abrogated on overexpression of NHE1, whereas small interfering RNA-mediated gene silencing of NHE1 significantly increased the sensitivity of cancer cells to growth-inhibitory stimuli. Finally, histopathologic analysis of breast cancer biopsies obtained from patients with type II diabetes treated with the synthetic agonist rosiglitazone showed significant repression of NHE1 in the tumor tissue. These data provide evidence for tumor-selective downregulation of NHE1 by activated PPAR gamma in vitro and in pathologic specimens from breast cancer patients and could have potential implications for the judicious use of low doses of PPAR gamma ligands in combination chemotherapy regimens for an effective therapeutic response. [Cancer Res 2009;69(22):8636-44]
Resumo:
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with well-established glucose-lowering activity. The in vitro and in vivo actions of natural putative secretagogues of GLP-1 were investigated. The acute GLP-1 releasing activity of olive leaf extract (OLE), glutamine (GLN), alpha casein (ACAS), beta casein (BCAS) and chlorogenic acid (CGA) were assessed in STC-1 cells and C57BL/6 mice. All compounds except ACAS significantly increased acute in vitro GLP-1 secretion (66-386%; P
Resumo:
Type III galactosemia results from reduced activity of the enzyme UDP-galactose 4'-epimerase. Five disease-associated alleles (G90E, V94M, D103G, N34S and L183P) and three artificial alleles (Y105C, N268D, and M284K) were tested for their ability to alleviate galactose-induced growth arrest in a Saccharomyces cerevisiae strain which lacks endogenous UDP-galactose 4'-epimerase. For all of these alleles, except M284K, the ability to alleviate galactose sensitivity was correlated with the UDP-galactose 4'-epimerase activity detected in cell extracts. The M284K allele, however, was able to substantially alleviate galactose sensitivity, but demonstrated near-zero activity in cell extracts. Recombinant expression of the corresponding protein in Escherichia coil resulted in a protein with reduced enzymatic activity and reduced stability towards denaturants in vitro. This lack of stability may result from the introduction of an unpaired positive charge into a bundle of three alpha-helices near the surface of the protein. The disparities between the in vivo and in vitro data for M284K-hGALE further suggest that there are additional, stabilising factors present in the cell. Taken together, these results reinforce the need for care in the interpretation of in vitro, enzymatic diagnostic tests for type III galactosemia. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Inhibitors of Gly transporter type-1 (GlyT1) for the treatment of schizophrenia have been pursued on the basis of the NMDA receptor (R) hypofunction hypothesis, which stems largely from the observation that NMDAR antagonists induce symptoms that more closely mimic those characteristic of schizophrenia than do other classes of psychotic agents. GlyT1 is responsible for uptake of synaptic Gly, an NMDAR co-agonist amino acid, in neuronal populations throughout the forebrain. GlyT1 inhibition thereby potentiates NMDAR activity by increasing synaptic Gly levels. Correspondingly, a large body of data suggests that GlyT1 inhibitors likely confer more comprehensive symptom alleviation than current antipsychotics. To date, a number of small-molecule GlyT1 inhibitors have been reported by the pharmaceutical industry. Developments in the discovery and characterization of GlyT1 inhibitors are discussed in this review.
Resumo:
The effects of the novel benzimidazole, triclabendazole (Fasinex, Ciba-Geigy), in its active sulphoxide metabolite form (TCBZ-SX), on the tegumental surface of Fasciola hepatica has been examined in vitro. The tegument of adult flukes incubated in TCBZ-SX (50 mug/ml) appeared swollen and blebbed after only 6 h. In addition, progressive spine loss at the oral cone was evident following 12 h treatment. After 24 h, the tegumental syncytium and spines had completely sloughed away, leaving an exposed basal lamina and empty spine sockets. Juvenile flukes (3 weeks old) also demonstrated tegumental alterations after treatment with TCBZ-SX (20 mug/ml). The syncytium became extremely roughened and corrugated on both dorsal and ventral surfaces after only 3 h. Following 6- and 9-h incubations, there were many deep furrows, which were especially pronounced on the ventral surface, and by 18 h, the juvenile tegument was severely disrupted, especially on the ventral surface. In all cases, the effects were more marked than in the previous incubation periods. The results confirm the potent activity of triclabendazole against F. hepatica and suggest that the tegument of adult and juvenile flukes may be a target organ for this important fasciolicide.
Modulation of the motility of the vagina vera of Ascaris suum in vitro by FMRFamide-related peptides
Resumo:
Ascaris suum contains a large number of FMRFamide-related peptides (FaRPs) of which KNEFIRFamide (AF1), KHEYLRFamide (AF2) and KSAYMRFamide (AF8, also called PF3) have been extensively studied and are known to exert actions on somatic muscle strips of the worm. In the present study, the effects of AF1, AF2 and AF8 on the activity of the vagina vera of female A. suum have been examined in vitro. The vagina vera is a muscular tube connecting the uterus and vagina uteri to the gonopore and is probably involved in regulating egg output. The tissue exhibited spontaneous, rhythmic contractions in vitro, which were modulated by each of the FaRPs tested. The effects of each of the peptides were qualitatively and quantitatively different, and in each case were reversible. AF1 (1 mu M) caused a biphasic response in the form of a transient lengthening of the preparation, followed by a shortening; contractions were initially inhibited but resumed 5 min post-addition of the peptide. Lower concentrations (less than or equal to 0.1 mu M) induced a less marked effect, with rhythmic contractions returning 5 min post-addition. AF2 and AF8 reduced contraction frequency at concentrations greater than or equal to 0.1 mu M. Both peptides also caused the tissue to shorten, although the effects of AF8 on baseline tension were inconsistent. The apparent potencies of AF1 and AF8 on contraction frequency of the vagina vera were 10-fold greater than AF2 and, unlike their actions on A. suum somatic body wall muscles, the actions of AF1 and AF2 were qualitatively different. Indeed, the effects of each of these FaRPs on the vagina vera were markedly different from those observed on the somatic muscle.
Resumo:
The hydroxymethylglutaryl coenzmye A (HMG CoA) reductase inhibitor lovastatin is used to treat hyperlipidaemia. This agent prevents the isoprenylation of some proteins involved in signal transduction processes and inhibits IgE-receptor-linked mediator release from RBL-2H3 cells. In this study the effect of in vivo and in vitro administration of lovastatin on histamine release from rat peritoneal mast cells was examined. Lovastatin (4 mg/kg/day for 2 weeks) inhibited histamine release induced by concanavalin A (con A) from rat peritoneal mast cells of Hooded-Lister rats and both homozygous lean and obese Zucker rats. In contrast, release induced by antirat IgE (anti-IgE) was only significantly inhibited in cells derived from Hooded-Lister rats and that induced by compound 48/ 80 was not altered. Lovastatin (20 mu M, 24 h, in vitro) caused a significant inhibition of the subsequent histamine release to con A, anti-IgE and compound 48/80 but not to the calcium ionophore A 23187. It is important to determine whether such inhibitory effects are also observed after the chronic, clinical administration of lovastatin and other HMG CoA reductase inhibitors.
MODULATORY ACTION OF HELICOBACTER-PYLORI ON HISTAMINE-RELEASE FROM MAST-CELLS AND BASOPHILS IN-VITRO
Resumo:
Helicobacter pylori is important in the aetiology of peptic ulceration. Despite inducing an inflammatory response in the mucosa, the organism persists, suggesting that it has efficient protective mechanisms. Some bacterial and viral products modulate histamine secretion from inflammatory cells. Therefore, this study examined the modulatory effects of H. pylori preparations on histamine release from rat peritoneal mast cells and human basophils. Eleven clinical isolates of H. pylori were prepared in different ways: as whole washed bacteria, washed sonicated bacteria, and formalin-killed bacteria, and as outer-membrane and lipopolysaccharide (LPS) extracts. Histamine release from mast cells or basophils was not elicited by any of these bacterial preparations alone. However, when mixed with various secretory stimulants, the bacterial preparations caused inhibition of histamine release from rat mast cells (calcium ionophore A23187, compound 48/80, concanavalin A, anti-rat IgE) and human basophils (A23187, N-formyl Met-Leu-Phe). The degree of inhibition ranged from 48 % to 97 %. These results indicate that H. pylori exerts an inhibitory effect on cells of the immune system that contributes to its persistence within the gastric mucosa.
Resumo:
In this paper, we report the synthesis and biological activity of a series of dihydroisocoumarin analogues Conjugated with fatty acids, alcohols, or amines, of varying hydrocarbon chain length and degree of unsaturation, to (he dihydroisocoumarins, kigelin and mellein, at the C-7 and C-8 positions on the core dihydroisocoumarin structure. These compounds were evaluated for their antiproliferative activity against human breast cancer (MCF-7 and MDA-MB-468) and melanoma cells (SK-MEL-28 and Malme-3M) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Two compounds Conjugated with gamma-linolenyl alcohol (18:3 n-6) demonstrated potent antiproliferative activity in vitro with one of these 4-hydroxy-3-oxo-1.3-dihydro-isobenzofuran-5-carboxylic acid octadeca-6,9,12-trienyl ester, demonstrating significant antitumor activity in vivo ill a number of human tumor xenograft models.
Resumo:
The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.
Resumo:
Trichothecenes are a large family of chemically related mycotoxins. Deoxynivalenol (DON), T-2 and HT-2 toxins belong to this family and are produced by various species of Fusarium. The H295R steroidogenesis assay, regulation of steroidogenic gene expression and reporter gene assays (RGAs) for the detection of androgen, estrogen, progestagen and glucocorticoid (ant)agonist responses, have been used to assess the endocrine disrupting activity of DON, T-2 and HT-2 toxins.
H295R cells were used as a model for steroidogenesis and gene expression studies and exposed with either DON (0.1–1000 ng/ml), T-2 toxin (0.0005–5 ng/ml) or HT-2 toxin (0.005–50 ng/ml) for 48 h. We observed a reduction in hormone levels in media of exposed cells following radioimmunoassay. Cell viability was determined by four colorimetric assays and we observed reduced cell viability with increasing toxin concentrations partly explaining the significant reduction in hormone levels at the highest toxin concentration of all three trichothecenes.
Thirteen of the 16 steroidogenic genes analyzed by quantitative real time PCR (RT-qPCR) were significantly regulated (P < 0.05) by DON (100 ng/ml), T-2 toxin (0.5 ng/ml) and HT-2 toxin (5 ng/ml) compared to the control, with reference genes (B2M, ATP5B and ACTB). Whereas HMGR and CYP19 were down-regulated, CYP1A1 and CYP21 were up-regulated by all three trichothecenes. DON further up-regulated CYP17, HSD3B2, CYP11B2 and CYP11B1 and down-regulated NR5A1. T-2 toxin caused down-regulation of NR0B1 and NR5A1 whereas HT-2 toxin induced up-regulation of EPHX and HSD17B1 and down-regulation of CYP11A and CYP17. The expressions of MC2R, StAR and HSD17B4 genes were not significantly affected by any of the trichothecenes in the present study.
Although the results indicate that there is no evidence to suggest that DON, T-2 and HT-2 toxins directly interact with the steroid hormone receptors to cause endocrine disruption, the present findings indicate that exposure to DON, T-2 toxin and HT-2 toxin have effects on cell viability, steroidogenesis and alteration in gene expression indicating their potential as endocrine disruptors.
Resumo:
BACKGROUND: The mitotic arrest deficiency protein 2 (MAD2) is a key component of the mitotic spindle assembly checkpoint, monitoring accurate chromosomal alignment at the metaphase plate before mitosis. MAD2 also has a function in cellular senescence and in a cell’s response to microtubule inhibitory (MI) chemotherapy exemplified by paclitaxel.
METHODS: Using an siRNA approach, the impact of MAD2 down-regulation on cellular senescence and paclitaxel responsiveness was investigated. The endpoints of senescence, cell viability, migration, cytokine expression, cell cycle analysis and anaphase bridge scoring were carried out using standard approaches.
RESULTS: We show that MAD2 down-regulation induces premature senescence in the MCF7 breast epithelial cancer cell line. These MAD2-depleted (MAD2k) cells are also significantly replicative incompetent but retain viability. Moreover, they show significantly higher levels of anaphase bridges and polyploidy compared to controls. In addition, these cells secrete higher levels of IL-6 and IL-8
representing key components of the senescence-associated secretory phenotype (SASP) with the ability to impact on neighbouring cells. In support of this, MAD2kcells show enhanced migratory ability. At 72 h after paclitaxel, MAD2kcells show a significant further induction of senescence compared with paclitaxel naive controls. In addition, there are significantly more viable cells in the MAD2k MCF7 cell line after paclitaxel reflecting the observed increase in senescence.
CONCLUSION: Considering that paclitaxel targets actively dividing cells, these senescent cells will evade cytotoxic kill. In conclusion, compromised MAD2 levels induce a population of senescent cells resistant to paclitaxel.
Resumo:
Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was used to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1-1000ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000ng/ml (3.87µM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000ng/ml (3.87µM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway.
Resumo:
To examine the effect of elevated pH, as reported during urinary catheter infections, on quinolone activity against the urease-producing pathogen Proteus mirabilis.