47 resultados para Illumination globale


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object tracking is an active research area nowadays due to its importance in human computer interface, teleconferencing and video surveillance. However, reliable tracking of objects in the presence of occlusions, pose and illumination changes is still a challenging topic. In this paper, we introduce a novel tracking approach that fuses two cues namely colour and spatio-temporal motion energy within a particle filter based framework. We conduct a measure of coherent motion over two image frames, which reveals the spatio-temporal dynamics of the target. At the same time, the importance of both colour and motion energy cues is determined in the stage of reliability evaluation. This determination helps maintain the performance of the tracking system against abrupt appearance changes. Experimental results demonstrate that the proposed method outperforms the other state of the art techniques in the used test datasets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-wave mixing in quasi-periodic structures (QPSs) composed of nonlinear anisotropic dielectric layers, stacked in Fibonacci and Thue-Morse sequences, has been explored at illumination by a pair of pump waves with dissimilar frequencies and incidence angles. A new formulation of the nonlinear scattering problem has enabled the QPS analysis as a perturbed periodic structure with defects. The obtained solutions have revealed the effects of stack composition and constituent layer parameters, including losses, on the properties of combinatorial frequency generation (CFG). The CFG features illustrated by the simulation results are discussed. It is demonstrated that quasi-periodic stacks can achieve a higher efficiency of CFG than regular periodic multilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research in the field of photocatalytic reactors in the past three decades has been an area of extensive and diverse activity with an extensive range of suspended and fixed film photocatalyst configurations being reported. The key considerations for photocatalytic reactors, however, remain the same; effective mass transfer of pollutants to the photocatalyst surface and effective deployments and illumination of the photocatalyst. Photocatalytic reactors have the potential versatility to be applied to the remediation of a range of water and gaseous effluents. Furthermore they have also been applied to the treatment of potable waters. The scale-up of photocatalytic reactors for waste and potable water treatment plants has also been demonstrated. Systems for the reduction of carbon dioxide to fuel products have also been reported. This paper considers the main photocatalytic reactor configurations that have been reported to date. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofilm growth on stone surfaces is a significant contributing factor to stone biodeterioration. Current market based biocides are hazardous to the environment and to public health. We have investigated the photo-dynamic effect of methylene blue (MB) in the presence of hydrogen peroxide (H2O2) on the destruction of the cyanobacterium Synechococcus leopoliensis (S. leopoliensis) under irradiation with visible light. Data presented in this paper illustrate that illumination of S. leopoliensis in the presence of a photosensitiser (MB) and H2O2 results in the decomposition of both the cyanobacterium and the photosensitiser. The presence of MB and H2O2 affects the viability of the photosensitiser and the cyanobacterium with the fluorescence of both decreasing by 80% over the irradiation time investigated. The photo-dynamic effect was observed under aerobic and anaerobic conditions indicating that oxygen was not necessary for the process. This novel combination could be effective for the remediation of biofilm colonised stone surfaces

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A considerable number of investigations have started to elucidate the essential roles biological agents play in the biodeterioration of stone. Chemical biocides are becoming increasingly banned because of the environmental and health hazards associated with these toxic substances. The present study reports the photodynamic effect of Methylene Blue (MB) and Nuclear Fast Red (NFR) in the presence of hydrogen peroxide (H2O2) on the destruction of the algae Chlorella vulgaris (C. vulgaris) under irradiation with visible light. Illumination of C. vulgaris in the presence of MB or NFR combined with H2O2 results in the decomposition of both the algal species and the photosensitizer. The photodynamic effect was investigated under aerobic and anaerobic conditions. Differences in mechanism type are reported and are dependent on both the presence and the absence of oxygen. The behavior of each photosensitizer leads to a Type II mechanism and a Type I/Type II combination for MB and NFR, respectively, being concluded. This novel combination could be effective for the remediation of biofilm-colonized stone surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacterial toxins present in drinking water sources pose a considerable threat to human health. Conventional water treatment systems have proven unreliable for the removal of these toxins and hence new techniques have been investigated. Previous work has shown that TiO2 photocatalysis effectively destroys microcystin-LR in aqueous solutions, however non-toxic by-products were detected. It has been shown that photocatalytic reactions are enhanced by utilisation of alternative electron acceptors. We report here enhanced photocatalytic degradation of microcystin-LR following the addition of hydrogen peroxide to the system. It was also found that hydrogen peroxide with UV illumination alone was capable of decomposing microcystin-LR although at a much slower rate than found for TiO2. No HPLC detectable by-products were found when the TiO2/UV/H2O2 system was used indicating that this method is more effective than TiO2/UV alone. Results however indicated that only 18% mineralisation occurred with the TiO2/UV/H2O2 system and hence undetectable by-products must still be present. At higher concentrations hydrogen peroxide was found to compete with microcystin-LR for surface sites on the catalyst but at lower peroxide concentrations this competitive adsorption was not observed. Toxicity studies showed that both in the presence and absence of H2O2 the microcystin solutions were detoxified. These findings suggest that hydrogen peroxide greatly enhances the photocatalytic oxidation of microcystin-LR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absolute magnitude (H) of an asteroid is a fundamental parameter describing the size and the apparent brightness of the body. Because of its surface shape, properties and changing illumination, the brightness changes with the geometry and is described by the phase function governed by the slope parameter (G). Although many years have been spent on detailed observations of individual asteroids to provide H and G, vast majority of minor planets have H based on assumed G and due to the input photometry from multiple sources the errors of these values are unknown. We compute H of ~ 180 000 and G of few thousands asteroids observed with the Pan-STARRS PS1 telescope in well defined photometric systems. The mean photometric error is 0.04 mag. Because on average there are only 7 detections per asteroid in our sample, we employed a Monte Carlo (MC) technique to generate clones simulating all possible rotation periods, amplitudes and colors of detected asteroids. Known asteroid colors were taken from the SDSS database. We used debiased spin and amplitude distributions dependent on size, spectral class distributions of asteroids dependent on semi-major axis and starting values of G from previous works. H and G (G12 respectively) were derived by phase functions by Bowell et al. (1989) and Muinonen et al. (2010). We confirmed that there is a positive systematic offset between H based on PS1 asteroids and Minor Planet Center database up to -0.3 mag peaking at 14. Similar offset was first mentioned in the analysis of SDSS asteroids and was believed to be solved by weighting and normalizing magnitudes by observatory codes. MC shows that there is only a negligible difference between Bowell's and Muinonen's solution of H. However, Muinonen's phase function provides smaller errors on H. We also derived G and G12 for thousands of asteroids. For known spectral classes, slope parameters agree with the previous work in general, however, the standard deviation of G in our sample is twice as larger, most likely due to sparse phase curve sampling. In the near future we plan to complete the H and G determination for all PS1 asteroids (500,000) and publish H and G values online. This work was supported by NASA grant No. NNX12AR65G.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacterial (blue-green algal) toxins are extremely toxic naturally occurring substances which display hepato- and neurotoxic behaviour (1, 2). In this paper we report the application of titanium dioxide photocatalysis for the destruction of two of these compounds, microcystin-LR and anatoxin-a. The destruction of microcystin appears to follow Langmuir-Hinshelwood kinetics although a discrepancy was observed between adsorption constants determined for the photocatalytic process with those obtained from dark isotherms. A square root dependence between illumination intensity and rate of microcystin destruction was noted. When the destruction was performed in the presence of the naturally occurring pigment it appeared that the pigment also contributes to the destruction of the toxin. Toxicity studies on the photocatalysed toxin solutions indicates that the toxicity is substantially reduced within 30 min photolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy and photodynamic antimicrobial chemotherapy are widely used, but despite this, the relationships between fluence, wavelength of irradiation and singlet oxygen (1O2) production are poorly understood. To establish the relationships between these factors in medically-relevant materials, the effect of fluence on 1O2 production from a tetrakis(4-N-methylpyridyl)porphyrin (TMPyP)-incorporated 2-hydroxyethyl methacrylate: methyl methacrylate: methacrylic acid (HEMA:MMA:MAA) copolymer, a total energy of 50.48 J/cm², was applied at varying illumination power, and times. 1O2 production was characterised using anthracene-9,10-dipropionic acid, disodium salt (ADPA) using a recently described method. Using two light sources, a white LED array and a white halogen source, the LED array was found to produce less 1O2 than the halogen source when the same power (over 500-600 nm) and time conditions were applied. Importantly, it showed that the longest wavelength Q band (590 nm) is primarily responsible for 1O2 generation, and that a linear relationship exists between increasing power and time and the production of singlet oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy and photodynamic antimicrobial chemotherapy are widely used, but despite this, the relationships between fluence, wavelength of irradiation and singlet oxygen ((1) O2 ) production are poorly understood. To establish the relationships between these factors in medically relevant materials, the effect of fluence on (1) O2 production from a tetrakis(4-N-methylpyridyl)porphyrin (TMPyP)-incorporated 2-hydroxyethyl methacrylate: methyl methacrylate: methacrylic acid (HEMA: MMA:MAA) copolymer, a total energy of 50.48 J/cm(2) , was applied at varying illumination power, and times. (1) O2 production was characterized using anthracene-9,10-dipropionic acid, disodium salt (ADPA) using a recently described method. Using two light sources, a white LED array and a white halogen source, the LED array was found to produce less (1) O2 than the halogen source when the same power (over 500 - 600 nm) and time conditions were applied. Importantly, it showed that the longest wavelength Q band (590 nm) is primarily responsible for (1) O2 generation, and that a linear relationship exists between increasing power and time and the production of singlet oxygen. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential ‘solar fuel generator’. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in term limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV-Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3.La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035 rpm and 144 W of UV-Visible irradiation, which produced a rate of 89 µmol h-1 g-1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Few studies have examined the impact of long-term treatments or exposures on the development of cataract in maturity-onset animal models. We studied the effect of treatment with D-pantethine and exposure to ultraviolet-B (UVB) radiation on the development of lenticular opacity in the Emory mouse. METHODS: A total of 164 Emory mice were randomized by litter at weaning to exposure to UVB light at 12 mJ/cm(2) for 6 hr/day (UV) or usual room light (A), and within litter, were further randomized to bi-weekly intra-peritoneal injections of 0.8 g/kg pantethine (T) or no treatment (C). Retro illumination lens photos were taken at 2, 4, 6, 8, and 10 months after weaning, and graded in masked fashion. The animals were sacrificed at 10 months and the lenses analyzed for total pantethine and total cysteamine. RESULTS: Lens pantethine and cysteamine levels were significantly (P < 0.001) higher for the T as compared to C litters. Mean cataract grade increased monotonically over time for all four groups. Unadjusted mean grade for the AT group at 8 (1.32) and 10 (1.86) months appeared lower than for the other groups (AC: 2.17, 2.39; UVC: 1.77, 2.40; UVT: 1.88, 2.37). However, the mean grade for the pantethine-treated litters did not differ significantly from the untreated litters except at 2 months (when untreated litters had significantly lower grades), when adjusting for UV treatment, gender and litter effect. No significant difference in cataract score existed between UV-exposed and ambient litters. Mortality was higher among pantethine-treated (hazard ratio = 1.8, p = 0.05) and UV-exposed animals (hazard ratio = 1.8, p = 0. 03) than among the untreated and unexposed litters. CONCLUSION: Significantly increased lens levels of pantethine are achieved with long-term intra-peritoneal dosing. The impact of pantethine on the progression of lenticular opacity in the Emory mouse is less than has been reported in other models. This level of chronic UVB exposure appeared to have no effect on the development of cataract in this model.