60 resultados para Hypoxic bradycardia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythrocytosis is present when there is an increase in the red cell mass, usually accompanied by an elevated hemoglobin and hematocrit. This occurs when there is an intrinsic defect in the erythroid component of the bone marrow or for secondary reasons when an increase in erythropoietin production drives red cell production. In normoxic conditions, HIF-alpha interacts with the other proteins in the HIF pathway and is destroyed, but in hypoxic conditions, HIF-alpha binds to HIF-beta. and alters the expression of downstream genes, including the erythropoietin gene. The end result is an increase in erythropoietin production. Mutations in any of the genes in the HIF pathway could lead to changed proteins, abnormalities in the degradation of HIF-alpha and, ultimately, result in increased erythropoietin levels. A number of mutations in the VHL, PHD2, and HIF2A genes have been identified in individuals. These mutations lead to erythrocytosis. The clinical results of these mutations may include some major thromboembolic events in young patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypoxia-inducible factor (HIF) is a key regulator of the transcriptional response to hypoxia. While the mechanism underpinning HIF activation is well understood, little is known about its resolution. Both the protein and the mRNA levels of HIF-1a (but not HIF-2a) were decreased in intestinal epithelial cells exposed to prolonged hypoxia. Coincident with this, microRNA (miRNA) array analysis revealed multiple hypoxia-inducible miRNAs. Among these was miRNA-155 (miR-155), which is predicted to target HIF-1a mRNA. We confirmed the hypoxic upregulation of miR-155 in cultured cells and intestinal tissue from mice exposed to hypoxia. Furthermore, a role for HIF-1a in the induction of miR-155 in hypoxia was suggested by the identification of hypoxia response elements in the miR-155 promoter and confirmed experimentally. Application of miR-155 decreased the HIF-1a mRNA, protein, and transcriptional activity in hypoxia, and neutralization of endogenous miR-155 reversed the resolution of HIF-1a stabilization and activity. Based on these data and a mathematical model of HIF-1a suppression by miR-155, we propose that miR-155 induction contributes to an isoform-specific negative-feedback loop for the resolution of HIF-1a activity in cells exposed to prolonged hypoxia, leading to oscillatory behavior of HIF-1a-dependent transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heart activity of Pecten maximus (L.) has been recorded during various forms of experimentally induced respiratory stress. There was considerable variation in the responses of individual scallops but bradycardia generally occurred in response to all forms of respiratory stress, with the rate of fall in heart rate dependent upon the severity of hypoxia. When oxygen tension declined slowly in a closed respirometer there was regulation of both heart rate and oxygen consumption. The critical tension, Pc, for oxygen consumption lay between 70 and 80 mm Hg, and corresponded with a slight regulatory upswing of the heart rate, whereas the Pc for heart rate was much lower at 20–30 mm Hg. Sudden transfer to deoxygenated water for 3 h resulted in very rapid bradycardia and there was a rapid recovery and initial overshoot of the normal rate on return to well-oxygenated sea water. Aerial exposure for 3 h produced more gradual bradycardia followed by gradual recovery on return to sea water. The results of this work are compared in some detail with previous work on other species of bivalve from different geographical areas and habitats, and the mechanisms controlling cardiac and respiratory regulation are discussed. It is concluded that there are few clear-cut general differences between littoral and sublittoral species in their behavioural and physiological adaptations to hypoxia; the main distinguishing feature of littoral-adapted species is their ability to control air-gaping. Changes in heart activity generally indicate variations in metabolic rate, the speed at which the metabolic rate may be altered reflecting the degree of adaptation to the littoral environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immersed shannies (Blennius pholis) showed peak locomotory activity coincident with daylight high tides. Emersion caused cessation of breathing and bradycardia though Q02 was little affected. Q02 fell, however, when the abdomen was enclosed in an impermeable sheath to block cutaneous respiration. Gulping of air into the extensively vascular oesophagus probably also acts as a means of aerial respiration. Reimmersion of fish caused a transient bradycardia followed by a tachycardia and a fall in Q02 followed subsequently by a rise. The results are discussed in relation to the behavioural, circulatory, respiratory and morphological adaptations of the shanny to the intertidal habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxia results in adaptive changes in the transcription of a range of genes including erythropoietin. An important mediator is hypoxia-inducible factor-1 (HIF-1), a DNA binding complex shown to contain at least two basic helix-loop-helix PAS-domain (bHLH-PAS) proteins, HIF-1 alpha and aryl hydrocarbon nuclear receptor translocator (ARNT), In response to hypoxia, HIF-1 alpha is activated and accumulates rapidly in the cell. Endothelial PAS domain protein 1 (EPAS-1) is a recently identified bHLH-PAS protein with 48% identity to HIF-1 alpha, raising the question of its role in responses to hypoxia. We developed specific antibodies and studied expression and regulation of EPAS-1 mRNA and protein across a range of human cell lines. EPAS-1 was widely expressed, and strongly induced by hypoxia at the level of protein but not mRNA. Comparison of the effect of a range of activating and inhibitory stimuli showed striking similarities in the EPAS-1 and HIF-1 alpha responses. Although major differences were observed in the abundance of EPAS-1 and HIF-1 alpha in different cell types, differences in the inducible response were subtle with EPAS-1 protein being slightly more evident in normoxic and mildly hypoxic cells. Functional studies in a mutant cell line (Ka13) expressing neither HIF-1 alpha nor EPAS-1 confirmed that both proteins interact with hypoxically responsive targets, but suggest target specificity with greater EPAS-1 transactivation (relative to HIF-1 alpha transactivation) of the VEGF promoter than the LDH-A promoter. (C) 1998 by The American Society of Hematology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Valve and cardiac activity were simultaneously measured in the blue mussel (Mytilus edulis) in response to 10 d copper exposure. Valve movements, heart rates and heart-rate variability were obtained non-invasively using a Musselmonitor(R) (valve activity) and a modified version of the Computer-Aided Physiological Monitoring system (CAPMON; cardiac activity). After 2 d exposure of mussels (4 individuals per treatment group) to a range of dissolved copper concentrations (0 to 12.5 mu M as CuCl2) median valve positions (% open) and median heart rates (beats per minute) declined as a function of copper concentration. Heart-rate variability (coefficient of variation for interpulse durations) rose in a concentration-dependent manner. The 48 h EC50 values (concentrations of copper causing 50% change) for valve positions, heart rates and heart-rate variability were 2.1, 0.8, and 0.06 mu M, respectively. Valve activity was weakly correlated with both heart rate (r = 0.48 +/- 0.02) and heart-rate variability (r = 0.32 +/- 0.06) for control individuals (0 mu M Cu2+). This resulted from a number of short enclosure events that did not coincide with a change in cardiac activity. Exposure of mussels to increasing copper concentrations (greater than or equal to 0.8 mu M) progressively reduced the correlation between valve activity and heart rates (r = 0 for individuals dosed with greater than or equal to 6.3 mu M Cu2+), while correlations between valve activity and heart-rate variability were unaffected. The poor correlations resulted from periods of valve flapping that were not mimicked by similar fluctuations in heart rate or heart-rate variability. The data suggest that the copper-induced bradycardia observed in mussels is not a consequence of prolonged valve closure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that low levels of copper (down to 0.8 muM) induce bradycardia in the blue mussel (Mytilus edulis) and that this is not caused by prolonged Valve closure. The aim of this study was to determine the precise mechanism responsible. To establish if copper was directly affecting heart cell physiology, recordings of contractions from isolated ventricular strips were made using an isometric force transducer, in response to copper concentrations (as CuCl2) ranging between 1 muM and 1 mM. Inhibition of mechanical activity only occurred at 1 mM copper, suggesting that the copper-induced bradycardia observed in whole animals cannot be attributed to direct cardiotoxicity. Effects of copper on the cardiac nerves were subsequently examined. Following removal of visceral ganglia (from where the cardiac nerves originate), exposure to 12.5 muM copper had no effect on the heart rate of whole animals. The effect of copper on the heart rate of mussels could not be abolished by depletion of the monoamine content of the animal using reserpine. However, pre-treatment of the animals with alpha -bungarotoxin considerably reduced the sensitivity of the heart to copper. These results indicated that the influence of copper on the heart of M. edulis might be mediated by a change in the activity of cholinergic nerves to heart. In the final experiments, mussels were injected with either benzoquinonium or D-tubocurarine, prior to copper exposure, in an attempt to selectively block the inhibitory or excitatory cholinoreceptors of the heart. Only benzoquinonium decreased the susceptibility of the heart to copper, suggesting that copper affects the cardiac activity of blue mussels by stimulating inhibitory cholinergic nerves to the heart. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised.

Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa.

Design, setting and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten(+/-)) mice harbouring inactivation of one PTEN allele.

Interventions: Small interfering RNA (siRNA)- or small hairpin RNA (shRNA)-directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions.

Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays.

Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions displaying atypical cytologic features in Pten(+/-) murine prostate tissue relative to normal epithelium in wild-type PTEN (Pten(WT)) glands. Attenuation of CXCL8 signalling decreased viability of PCa cells harbouring partial or complete PTEN loss through promotion of G1 cell cycle arrest and apoptosis. The current absence of clinical validation is a limitation of the study.

Conclusions: PTEN loss induces a selective upregulation of CXCL8 signalling that sustains the growth and survival of PTEN-deficient prostate epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central and peripheral cardiovascular effects of synthetic trout urotensin II (UII) were investigated in the conscious rainbow trout. Intracerebroventricular injection of 50 pmol UII produced a slight (3%) but significant (P < 0.05) increase in heart rate but had no effect on mean arterial blood pressure. Injection of 500 pmol UII icy produced a significant (P < 0.05) rise (8%) in blood pressure with no change in heart rate. In contrast to the weak presser effect of centrally administered UII, intra-arterial injection of UII produced a dose-dependent increase in arterial blood pressure and decrease in heart rate with significant (P < 0.05) effects on both parameters observed at a dose of 25 pmol. Higher doses of the peptide produced a sustained decrease in cardiac output that accompanied the bradycardia and rise in arterial blood pressure. The UII-induced bradycardia, but not the increase in pressure, was abolished by pretreatment with phentolamine. Trout UII produced a sustained and dose-dependent contraction of isolated vascular rings prepared from trout efferent branchial [-log 50% of the concentration producing maximal contraction (pD(2)) = 8.30] and celiacomesenteric (pD(2) = 8.22) arteries but was without effects on vascular rings from the anterior cardinal vein. The data indicate that the presser effect of UII in trout is mediated predominantly, if not exclusively, by an increase in systemic vascular resistance. The UII-induced hypertensive response does not seem to involve release of catecholamines, but the bradycardia may arise from adrenergic-mediated activation of cardioinhibitory baroreflexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Androgen withdrawal induces hypoxia in androgen-sensitive tissue; this is important as in the tumour microenvironment hypoxia is known to drive malignant progression. This study examined the time-dependent effect of androgen deprivation therapy (ADT) on tumour oxygenation and investigated the role of ADT-induced hypoxia on malignant progression in prostate tumours. LNCaP xenografted tumours were treated with anti-androgens and tumour oxygenation measured. Dorsal skin fold chambers (DSF) were used to image tumour vasculature in vivo. Quantitative PCR (QPCR) identified differential gene expression following treatment with bicalutamide. Bicalutamide and vehicle-only treated tumours were re-established in vitro and invasion and sensitivity to docetaxel were measured. Tumour growth delay was calculated following treatment with bicalutamide combined with the bioreductive drug AQ4N. Tumour oxygenation measurements showed a precipitate decrease following initiation of ADT. A clinically relevant dose of bicalutamide (2mg/kg/day) decreased tumour oxygenation by 45% within 24h, reaching a nadir of 0.09% oxygen (0.67±0.06 mmHg) by day 7; this persisted until day 14 when it increased up to day 28. Using DSF chambers, LNCaP tumours treated with bicalutamide showed loss of small vessels at days 7 and 14 with revascularization occurring by day 21. QPCR showed changes in gene expression consistent with the vascular changes and malignant progression. Cells from bicalutamide-treated tumours were more malignant than vehicle-treated controls. Combining bicalutamide with AQ4N (50mg/kg; single dose) caused greater tumour growth delay than bicalutamide alone. This study shows that bicalutamide-induced hypoxia selects for cells that show malignant progression; targeting hypoxic cells may provide greater clinical benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: In ischemic retinopathies, the misdirection of reparative angiogenesis away from the hypoxic retina leads to pathologic neovascularization. Thus, therapeutic strategies that reverse this trend would be extremely beneficial. Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is an important mediator of vascular endothelial growth factor (VEGF) function facilitating vascular growth and maturation. However, in addition to NO, eNOS can also produce superoxide (O), exacerbating pathology. Here, our aim was to investigate the effect of eNOS overexpression on vascular closure and subsequent recovery of the ischemic retina.

Methods: Mice overexpressing eNOS-GFP were subjected to oxygen-induced retinopathy (OIR) and changes in retinal vascularization quantified. Background angiogenic drive was assessed during vascular development and in aortic rings. NOS activity was measured by Griess assay or conversion of radiolabeled arginine to citrulline, nitrotyrosine (NT), and superoxide by immunolabeling and dihydroethidium fluorescence and VEGF by ELISA.

Results: In response to hyperoxia, enhanced eNOS expression led to increased NOS-derived superoxide and dysfunctional NO production, NT accumulation, and exacerbated vessel closure associated with tetrahydrobiopterin (BH) insufficiency. Despite worse vaso-obliteration, eNOS overexpression resulted in elevated hypoxia-induced angiogenic drive, independent of VEGF production. This correlated with increased vascular branching similar to that observed in isolated aortas and during development. Enhanced recovery was also associated with neovascular tuft formation, which showed defective NO production and increased eNOS-derived superoxide and NT levels.

Conclusions: In hyperoxia, reduced BH bioavailability causes overexpressed eNOS to become dysfunctional, exacerbating vaso-obliteration. In the proliferative phase, however, eNOS has important prorepair functions enhancing angiogenic growth potential and recovery in ischemia. © 2012 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. This study was conducted to evaluate whether regions of the retinal neuropile become hypoxic during periods of high oxygen consumption and whether depletion of the outer retina reduces hypoxia and related changes in gene expression.

METHODS. Retinas from rhodopsin knockout (Rho(-/-)) mice were evaluated along with those of wild-type (WT) control animals. Retinas were also examined at the end of 12-hour dark or light periods, and a separate group was treated with L-cis-diltiazem at the beginning of a 12-hour dark period. Hypoxia was assessed by deposition of hypoxyprobe (HP) and HP-protein adducts were localized by immunohistochemistry and quantified using ELISA. Also, hypoxia-regulated gene expression and transcriptional activity were assessed alongside vascular density.

RESULTS. Hypoxia was observed in the inner nuclear and ganglion cell layers in WT retina and was significantly reduced in Rho (-/-) mice (P < 0.05). Retinal hypoxia was significantly increased during dark adaptation in WT mice (P < 0.05), whereas no change was observed in Rho(-/-) or with L-cis-diltiazem-treated WT mice. Hypoxia-inducible factor (HIF)-1 alpha DNA-binding and VEGF mRNA expression in Rho(-/-) retina was significantly reduced in unison with outer retinal depletion (P < 0.05). Retina from the Rho(-/-) mice displayed an extensive intraretinal vascular network after 6 months, although there was evidence that capillary density was depleted in comparison with that in WT retinas.

CONCLUSIONS. Relative hypoxia occurs in the inner retina especially during dark adaptation. Photoreceptor loss reduces retinal oxygen usage and hypoxia which corresponds with attenuation of the retinal microvasculature. These studies suggest that in normal physiological conditions and diurnal cycles the adult retina exists in a state of borderline hypoxia, making this tissue particularly susceptible to even subtle reductions in perfusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aberrant expression of the MAD2 protein has been linked to chromosomal instability, malignant transformation and chemoresistance. Although reduced MAD2 expression is well recognised in human cancer cell lines, the mechanism(s) underlying its downregulation remain elusive. The objective of this study was to establish the impact of hypoxia on MAD2 expression and to investigate the potential role of aberrant promoter methylation as a possible mechanism of MAD2 downregulation. For this purpose, three ovarian cancer cell lines, displaying differing levels of MAD2, were treated with chromatin modifying drugs, pre and post-hypoxia exposure and a DHPLC analysis of DNA promoter methylation carried out. We show that hypoxia induces downregulation of MAD2 expression, independently of MAD2 promoter methylation. We also show no evidence of MAD2 promoter methylation in breast and prostate cancer cells or in breast cancer clinical material. While our findings provide no evidence for MAD2 promoter methylation, we show a concomitant upregulation of p21 with downregulation of MAD2 in hypoxia. Our in vitro results were also confirmed in an ovarian cancer tissue microarray (TMA), where a reciprocal staining of MAD2 and CAIX was found in 21/60 (35%) of tumours. In summary, MAD2 downregulation may be a crucial mechanism by which hypoxic cells become chemorefractory. This stems from our previous work where we demonstrated that MAD2 downregulation induces cellular senescence, a viable cellular fate, with resultant cellular resistance to paclitaxel. Moreover, MAD2 downregulation could play a central role in the induction of chemoresistance in hypoxia, a key tumour microenvironment associated with chemoresistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythropoietin (Epo), a glycoprotein hormone produced principally in the fetal kidney and in the adult liver in response to hypoxia, is the prime regulator of growth and differentiation in erythroid progenitor cells. The regulation of Epo gene expression is not fully understood, but two mechanisms have been proposed. One involves the participation of a heme protein capable of reversible oxygenation and the other depends on the intracellular concentration of reactive oxygen species (ROS), assumed to be a function of pO2. We have investigated the production of Epo in response to three stimuli, hypoxia, cobalt chloride, and the iron chelator desferrioxamine, in Hep3B cells. As expected, hypoxia caused a marked rise in Epo production. When the cells were exposed to the paired stimuli of hypoxia and cobalt no further increase was found. In contrast, chelation of iron under hypoxic conditions markedly enhanced Epo production, suggesting that the two stimuli act by separate pathways. The addition of carbon monoxide inhibited hypoxia-induced Epo production, independent of desferrioxamine concentration. Taken together these data support the concept that pO2 and ROS are sensed independently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythropoietin (EPO) is the main humoral stimulus of erythropoiesis. In adult mammals, the kidney releases EPO in response to hypoxic stress. Conflicting data have suggested either renal tubular or peritubular cell origins of EPO synthesis in vivo. In situ hybridization studies were performed to define further the kidney cell type(s) capable of increasing EPO gene expression during hypoxic stimulation. EPO gene expression was stimulated in mice exposed to acute hypobaric hypoxia. Kidneys from hypoxic and control normoxic mice were obtained. Six digoxigenin-labelled oligonucleotide probes complementary to EPO exon sequences were utilized for in situ hybridization for EPO messenger RNA. Positive hybridization signals were identified in some proximal tubular cells, confined to the inner third of the renal cortex of hypoxic mouse kidney.