61 resultados para Human Mitochondrial-dna
Resumo:
It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west—an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trøndelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andøya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.
Resumo:
The expression of two or more discrete phenotypes amongst individuals within a species (morphs) provides multiple modes upon which selection can act semi-independently, and thus may be an important stage in speciation. In the present study, we compared two sympatric morph systems aiming to address hypotheses related to their evolutionary origin. Arctic charr in sympatry in Loch Tay, Scotland, exhibit one of two discrete, alternative body size phenotypes at maturity (large or small body size). Arctic charr in Loch Awe segregate into two temporally segregated spawning groups (breeding in either spring or autumn). Mitochondrial DNA restriction fragment length polymorphism analysis showed that the morph pairs in both lakes comprise separate gene pools, although segregation of the Loch Awe morphs is more subtle than that of Loch Tay. We conclude that the Loch Awe morphs diverged in situ (within the lake), whereas Loch Tay morphs most likely arose through multiple invasions by different ancestral groups that segregated before post-glacial invasion (i.e. in allopatry). Both morph pairs showed clear trophic segregation between planktonic and benthic resources (measured by stable isotope analysis) but this was significantly less distinct in Loch Tay than in Loch Awe. By contrast, both inter-morph morphological and life-history differences were more subtle in Loch Awe than in Loch Tay. The strong ecological but relatively weak morphological and life-history divergence of the in situ derived morphs compared to morphs with allopatric origins indicates a strong link between early ecological and subsequent genetic divergence of sympatric origin emerging species pairs. The emergence of parallel specialisms despite distinct genetic origins of these morph pairs suggests that the effect of available foraging opportunities may be at least as important as genetic origin in structuring sympatric divergence in post-glacial fishes with high levels of phenotypic plasticity. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, , .
Resumo:
Although several studies have described an association between Alzheimer disease (AD) and genetic variation of mitochondrial DNA (mtDNA), each has implicated different mtDNA variants, so the role of mtDNA in the etiology of AD remains uncertain.
Resumo:
The dispersal capabilities of intertidal organisms may represent a key factor to their survival in the face of global warming, as species that cannot adapt to the various effects of climate change will have to migrate to track suitable habitat. Although species with pelagic larval phases might be expected to have a greater capacity for dispersal than those with benthic larvae, interspecies comparisons have shown that this is not always the case. Consequently, population genetic approaches are being increasingly used to gain insights into dispersal through studying patterns of gene flow. In the present study, we used nuclear single-nucleotide polymorphisms (SNPs) and mitochondrial DNA (mtDNA) sequencing to elucidate fine-scale patterns of genetic variation between populations of the Black Katy Chiton, Katharina tunicata, separated by 15-150 km in south-west Vancouver Island. Both the nuclear and mitochondrial data sets revealed no genetic differentiation between the populations studied, and an isolation-with-migration analysis indicated extensive local-scale gene flow, suggesting an absence of barriers to dispersal. Population demographic analysis also revealed long-term population stability through previous periods of climate change associated with the Pleistocene glaciations. Together, the findings of the present study suggest that this high potential for dispersal may allow K. tunicata to respond to current global warming by tracking suitable habitat, consistent with its long-term demographic stability through previous changes in the Earth's climate. (C) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106, 589597.
Resumo:
Question: How parallel is adaptive evolution when it occurs from different genetic backgrounds? Background: Divergent evolutionary lineages of several post-glacial fish species including the threespine stickleback are found together in Ireland. Goals: To investigate the morphological diversity of stickleback populations in Ireland and assess whether morphology evolved in parallel between evolutionary lineages. Methods: We sampled stickleback from lake, river, and coastal habitats across Ireland. Microsatellite and mitochondrial DNA data revealed evolutionary history. Geometric morphometrics and linear trait measurements characterized morphology. We used a multivariate approach to quantify parallel and non-parallel divergence within and between lineages. Results: Repeated evolution of similar morphologies in similar habitats occurred across Ireland, concordant with patterns observed elsewhere in the stickleback distribution. A strong pattern of habitat-specific morphology existed even among divergent lineages. Furthermore, a strong signal of shared morphological divergence occurred along a marine-freshwater axis. Evidently, deterministic natural selection played a more important role in driving freshwater adaptation than independent evolutionary history. © 2013 Mark Ravinet.
Resumo:
Question: How parallel is adaptive evolution when it occurs from different genetic backgrounds?
Background: Divergent evolutionary lineages of several post-glacial fish species including the threespine stickleback are found together in Ireland.
Goals: To investigate the morphological diversity of stickleback populations in Ireland and assess whether morphology evolved in parallel between evolutionary lineages.
Methods: We sampled stickleback from lake, river, and coastal habitats across Ireland. Microsatellite and mitochondrial DNA data revealed evolutionary history. Geometric morphometrics and linear trait measurements characterized morphology. We used a multivariate approach to quantify parallel and non-parallel divergence within and between lineages.
Results: Repeated evolution of similar morphologies in similar habitats occurred across Ireland, concordant with patterns observed elsewhere in the stickleback distribution. A strong pattern of habitat-specific morphology existed even among divergent lineages. Furthermore, a strong signal of shared morphological divergence occurred along a marine–freshwater axis. Evidently, deterministic natural selection played a more important role in driving freshwater adaptation than independent evolutionary history.
Resumo:
BACKGROUND: Transforming growth factor-beta (TGF-beta) is a potent growth inhibitor in a wide range of cell types. A transducer of TGF-beta signaling known as Mothers against decapentaplegic homologue 4 (Smad4) is a known tumor suppressor found on chromosome 18q21.1 and is typically inactivated by deletion or mutation in pancreatic and colorectal cancers. The purpose of the article is to investigate Smad4 expression, gene copy number and methylation status in advanced cases of prostate cancer.
METHODS: We have employed Methylation Specific PCR (MSP) to identify methylation sites within the Smad4 promoter and combined this with quantitative real-time PCR to look for correlates between methylation status and Smad4 expression and to examine androgen receptor (AR) expression. Bacterial artificial chromosome-comparative genomic hybridization (BAC-CGH) has been used to look for genomic amplifications and deletions which may also contribute to expression changes.
RESULTS: We fail to find evidence of genomic deletions or amplifications affecting the Smad4 locus on chromosome 18 but show a correlation between promoter methylation and the loss of Smad4 expression in the same material. We confirm that the AR locus on the X chromosome is amplified in 30% of the advanced clinical samples and that this correlates with increased transcript levels as previously reported by other groups.
CONCLUSION: This indicates that epigenetic changes affect the expression of the Smad4 protein in prostate cancer and points to methylation of the promoter as a novel marker of and contributor to the disease warranting further study.
Resumo:
Seafloor massive sulfide (SMS) mining will likely occur at hydrothermal systems in the near future. Alongside their mineral wealth, SMS deposits also have considerable biological value. Active SMS deposits host endemic hydrothermal vent communities, whilst inactive deposits support communities of deep water corals and other suspension feeders. Mining activities are expected to remove all large organisms and suitable habitat in the immediate area, making vent endemic organisms particularly at risk from habitat loss and localised extinction. As part of environmental management strategies designed to mitigate the effects of mining, areas of seabed need to be protected to preserve biodiversity that is lost at the mine site and to preserve communities that support connectivity among populations of vent animals in the surrounding region. These "set-aside" areas need to be biologically similar to the mine site and be suitably connected, mostly by transport of larvae, to neighbouring sites to ensure exchange of genetic material among remaining populations. Establishing suitable set-asides can be a formidable task for environmental managers, however the application of genetic approaches can aid set-aside identification, suitability assessment and monitoring. There are many genetic tools available, including analysis of mitochondrial DNA (mtDNA) sequences (e.g. COI or other suitable mtDNA genes) and appropriate nuclear DNA markers (e.g. microsatellites, single nucleotide polymorphisms), environmental DNA (eDNA) techniques and microbial metagenomics. When used in concert with traditional biological survey techniques, these tools can help to identify species, assess the genetic connectivity among populations and assess the diversity of communities. How these techniques can be applied to set-aside decision making is discussed and recommendations are made for the genetic characteristics of set-aside sites. A checklist for environmental regulators forms a guide to aid decision making on the suitability of set-aside design and assessment using genetic tools. This non-technical primer document represents the views of participants in the VentBase 2014 workshop.
Resumo:
The geographic and temporal origins of dogs remain controversial. We generated genetic sequences from 59 ancient dogs and a complete (28x) genome of a late Neolithic dog (dated to ~4800 calendar years before the present) from Ireland. Our analyses revealed a deep split separating modern East Asian and Western Eurasian dogs. Surprisingly, the date of this divergence (~14,000 to 6400 years ago) occurs commensurate with, or several millennia after, the first appearance of dogs in Europe and East Asia. Additional analyses of ancient and modern mitochondrial DNA revealed a sharp discontinuity in haplotype frequencies in Europe. Combined, these results suggest that dogs may have been domesticated independently in Eastern and Western Eurasia from distinct wolf populations. East Eurasian dogs were then possibly transported to Europe with people, where they partially replaced European Paleolithic dogs.
Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity
Resumo:
Objective: To investigate effects of cryopreservation on sperm motility and DNA integrity. Design: Pre-cryopreservation and post-cryopreservation analysis of motility and DNA integrity of semen and prepared sperm samples. Setting: A hospital andrology laboratory. Patient(s): Forty men attending the Regional Fertility Centre, Belfast, Northern Ireland. Intervention(s): Each sample was divided, and an aliquot was frozen unprepared. Remaining aliquots were prepared by Percoll density centrifugation (95.0:47.5) or direct swim-up procedure and divided into aliquots to allow direct comparison of fresh and frozen semen and prepared sperm (frozen with or without the addition of seminal plasma) from the same ejaculate. Samples were frozen by static-phase vapor cooling and being plunged into liquid nitrogen. Thawing was carried out at room temperature. Main Outcome Measure(s): Sperm DNA integrity was determined using a modified alkaline single cell gel electrophoresis (comet) assay, and motility was determined using computer-assisted semen analysis. Result(s): Sperm frozen unprepared in seminal fluid appeared more resistant to freezing damage than frozen prepared sperm. Further improvements can be achieved by selecting out the subpopulation of sperm with best motility and DNA integrity and freezing these sperm in seminal plasma, making this the optimal procedure. Conclusion(s): Freezing sperm in seminal plasma improves postthaw motility and DNA integrity.
Resumo:
Objective: to determine the incidence of Fas positivity and DNA double stranded breaks (DSB) as indicators of early and late stage apoptosis in ejaculated sperm. Design: Fas positivity was assessed by flow cytometry and DSB by neutral Comet assay Setting: Andrology Laboratory, Royal Maternity Hospita, Belfast Northern Ireland, UK. Patients: 45 infertile men undergoing infertility investigations and 10 fertile men undergoing vasectomies Main Outcome measures: Perecentage Fas positive cells, percentage DNA fragmentation, olive tail moments Results: The apoptotic marker Fas was detected in ejaculated sperm, with a higher incidence of Fas positivity in teratozoospermic and asthenozoospermic than in normozoospermic semen. No Fas positivity was observed in fertile mens’ sperm. DSB were greater in infertile than in fertile mens’ sperm and also greater in sperm in semen than in sperm prepared for assisted conception. There was an inverse relationship between DSB and both sperm concentration and motility. There was no relationship between Fas positivity and DNA damage. Conclusion: Fas was expressed in sperm of infertile men. In contrast, DNA fragmentation was observed in all sperm of fertile and infertile men and correlated with inadequate concentration and motility, which suggests that sperm DSB are ubiquitous and are not solely associated with apoptosis.
Resumo:
The human coronavirus 229E replicase gene encodes a protein, p66HEL, that contains a putative zinc finger structure linked to a putative superfamily (SF) 1 helicase. A histidine-tagged form of this protein, HEL, was expressed using baculovirus vectors in insect cells. The purified recombinant protein had in vitro ATPase activity that was strongly stimulated by poly(U), poly(dT), poly(C), and poly(dA), but not by poly(G). The recombinant protein also had both RNA and DNA duplex-unwinding activities with 5'-to-3' polarity. The DNA helicase activity of the enzyme preferentially unwound 5'-oligopyrimidine-tailed, partial-duplex substrates and required a tail length of at least 10 nucleotides for effective unwinding. The combined data suggest that the coronaviral SF1 helicase functionally differs from the previously characterized RNA virus SF2 helicases.