98 resultados para Hereditary anemia
Resumo:
Serum erythropoietic activity and reticulocyte response to anemia were investigated using a rabbit model. In hemolytic anemia, induced by injections of phenylhydrazine on Day 0 the hemoglobin reached a nadir (mean, 6.23 g/dl) on Day 4 when SEA was maximal (mean, 765 mU/ml). In animals venesected on Day 0 and Day 1 to produce anemia of equal severity, the SEA was maximal (mean 235 mU/ml) on Day 2. In both groups the reticulocyte response peaked on Day 7--at 34% for the hemolytic group and 21% for the venesected group. The 2,3-diphosphoglycerate, measured on Day 4, was significantly reduced in the PHZ-treated group. In the venesected group the 2,3-DPG increased between Day 0 and Day 4. There were no concurrent changes in acid-base balance. These results imply that the degree of anemia is only one of the factors which influence the level of circulating SEA.
Resumo:
This study was designed to assess the potential of the continuous erythropoietin receptor activator (C.E.R.A.) to correct anemia at extended administration intervals in erythropoiesis-stimulating agent-naīve patients with chronic kidney disease (CKD) not on dialysis and to determine its optimal starting dose.
Resumo:
The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified.
Resumo:
Between August 1989 and November 2003, 33 patients at our center with acquired aplastic anemia underwent bone marrow transplantation (BMT) from HLA-identical sibling donors with cyclophosphamide and in vivo anti-CD52 monoclonal antibodies (MoAb) for conditioning. The median age at BMT was 17 years (range, 4-46 years). Before BMT, 58% were heavily transfused (>50 transfusions), and 42% had previously experienced treatment failure with antithymocyte globulin-based immunosuppressive therapy. Unmanipulated bone marrow was used as the source of stem cells in all patients except 1. Graft-versus-host disease (GVHD) prophylaxis was with cyclosporine alone in 19 (58%) patients; 14 received anti-CD52 MoAb in addition to cyclosporine. The conditioning regimen was well tolerated without significant acute toxicity. Graft failure was seen in 8 patients (primary, n = 4; secondary, n = 4). Of those whose grafts failed, 4 survived long-term (complete autologous recovery, n = 2; rescue with previously stored marrow, n = 1; second allograft, n = 1). The cumulative incidence of graft failure and grade II to IV acute and chronic GVHD was 24%, 14%, and 4%, respectively. None developed extensive chronic GVHD. With a median follow-up of 59 months, the 5-year survival was 81% (95% confidence interval, 68%-96%). No unexpected early or late infectious or noninfectious complications were observed. We conclude that the conditioning regimen containing cyclophosphamide and anti-CD52 MoAb is well tolerated and effective for acquired aplastic anemia with HLA-matched sibling donors. The favorable effect on the incidence and severity of GVHD is noteworthy in this study and warrants further investigation.
Resumo:
A randomized trial was carried out comparing cyclosporin A (CsA) and short-term methotrexate (MTX) versus CsA alone for graft versus host disease (GVHD) prophylaxis in patients with severe aplastic anemia (SAA) undergoing allogeneic bone marrow transplantation (BMT) from a compatible sibling. Seventy-one patients (median age, 19 years; range, 4-46 years) were randomized to receive either CsA and MTX or CsA alone for the first 3 weeks after BMT. Subsequently, both groups received CsA orally, with gradual drug reduction until discontinuation 8 to 12 months after BMT. Patients randomized in both arms had comparable characteristics and received the same preparative regimen (ie, cyclophosphamide 200 mg/kg over 4 days). The median time for neutrophil engraftment was 17 days (range, 11-31 days) and 12 days (range, 4-45 days) for patients in the CsA/MTX group and the CsA alone group, respectively (P =.01). No significant difference was observed in the probability of either grade 2, grade 3, or grade 4 acute GVHD or chronic GVHD developing in the 2 groups. The Kaplan-Meier estimates of 1-year transplantation-related mortality rates for patients given either CsA/MTX or CsA alone were 3% and 15%, respectively (P =.07). With a median follow-up of 48 months from BMT, the 5-year survival probability is 94% for patients in the CsA/MTX group and 78% for those in the CsA alone group (P =. 05). These data indicate that the use of CsA with MTX is associated with improved survival in patients with SAA who receive transplants from compatible siblings. (Blood. 2000;96:1690-1697)
Resumo:
Rejection after allogeneic BMT for aplastic anemia is a complication with a high risk of mortality. We describe a patient who, following a second episode of rejection after a second BMT entered a third durable remission subsequent to treatment with ALG, donor lymphocyte infusions, GM-CSF, and erythropoietin. Therapy was well tolerated. At 5 years after rejection treatment, his hematopoiesis is of complete donor origin as determined by analyses of short tandem repeats. Thus, donor lymphocyte infusions can be considered as a therapy option for marrow rejection after allogeneic BMT for aplastic anemia.
Resumo:
In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Recessive congenital methemoglobinemia (RCM) is caused by a deficiency of reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase. One of the original propositi with the type 1 disorder has now been traced. He was found to be a compound heterozygote harboring 2 previously undescribed mutations in exon 9, a point mutation Gly873Ala predicting a Gly291Asp substitution, and a 3-bp in-frame deletion of codon 255 (GAG), predicting loss of glutamic acid. A brother and a surviving sister are heterozygous; each bears one of the mutations. Thirty-three different mutations have now been recorded for RCM. The original authors' optimism that RCM would provide material for future genetic studies has been amply justified.
Resumo:
The number of red blood cells is normally tightly regulated by a classic homeostatic mechanism based on oxygen sensing in the kidney. Decreased oxygen delivery resulting from anemia induces the production of erythropoietin, which increases red cell production and hence oxygen delivery. Investigations of erythropoietin regulation identified the transcription factor hypoxia-inducible factor (HIF). HIF is now recognized as being a key regulator of genes that function in a comprehensive range of processes besides erythropoiesis, including energy metabolism and angiogenesis. HIF itself is regulated through the -subunit, which is hydroxylated in the presence of oxygen by a family of three prolyl hydroxylase domain proteins (PHDs)/HIF prolyl hydroxylases/egg-laying-defective nine enzymes. Hydroxylation allows capture by the von Hippel–Lindau tumor suppressor gene product, ubiquitination, and destruction by the proteasome. Here we describe an inherited mutation in a mammalian PHD enzyme. We show that this mutation in PHD2 results in a marked decrease in enzyme activity and is associated with familial erythrocytosis, identifying a previously unrecognized cause of this condition. Our findings indicate that PHD2 is critical for normal regulation of HIF in humans.
Resumo:
A common feature of the mammalian septin gene family is complex genomic architecture with multiple alternate splice variants. Septin 9 has 18 distinct transcripts encoding 15 polypeptides, with two transcripts (SEPT9_v4 and v4*) encoding the same polypeptide. We have previously reported that the ratio of these distinct transcripts is altered in neoplasia, with the v4 transcript being the usual form in normal cells but v4* becoming predominant in tumours. This led us to ask what the functional differences between these two transcripts might be. The 5'-UTRs of v4 and v4* have distinct 5' ends encoded by exons 1 beta (v4) and 1 zeta and 2 (v4*) and a common 3' region and initiating ATG encoded within exon 3. Here we show that the two mRNAs are translated with different efficiencies and that cellular stress can alter this. A putative internal ribosome entry site can be identified in the common region of the v4 and v4* 5'-UTRs and translation is modulated by an upstream open-reading frame in the unique region of the v4 5'-UTR. Germline mutations in hereditary neuralgic amyotrophy (HNA) map to the region which is common to the two UTRs. These mutations dramatically enhance the translational efficiency of the v4 5'-UTR, leading to elevated SEPT9_v4 protein under hypoxic conditions. Our data provide a mechanistic insight into how the HNA mutations can alter the fine control of SEPT9_v4 protein and its regulation under physiologically relevant conditions and are consistent with the episodic and stress-induced nature of the clinical features of HNA.
Resumo:
Type III galactosaemia is a hereditary disease caused by reduced activity in the Leloir pathway enzyme, UDP-galactose 4'-epimerase (GALE). Traditionally, the condition has been divided into two forms-a mild, or peripheral, form and a severe, or generalized, form. Recently it has become apparent that there are disease states which are intermediate between these two extremes. Three mutations associated with this intermediate form (S81R, T150M and P293L) were analysed for their kinetic and structural properties in vitro and their effects on galactose-sensitivity of Saccharomyces cerevisiae cells that were deleted for the yeast GALE homologue Gal10p. All three mutations result in impairment of the kinetic parameters (principally the turnover number, k(cat)) compared with the wild-type enzyme. However, the degree of impairment was mild compared with that seen with the mutation (V94M) associated with the generalized form of epimerase deficiency galactosaemia. None of the three mutations tested affected the ability of the protein to dimerize in solution or its susceptibility to limited proteolysis in vitro. Finally, in the yeast model, each of the mutated patient alleles was able to complement the galactose-sensitivity of gal10 Delta cells as fully as was the wild-type human allele. Furthermore, there was no difference from control in metabolite profile following galactose exposure for any of these strains. Thus we conclude that the subtle biochemical and metabolic abnormalities detected in patients expressing these GALE alleles likely reflect, at least in part, the reduced enzymatic activity of the encoded GALE proteins.
Resumo:
Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r.
Resumo:
Objectives: Treatment of epithelial ovarian cancer (EOC) remains a challenge, despite advances in surgery and chemotherapy. Hereditary ovarian cancer is primarily due to germline mutations in the BRCA1 tumour suppressor gene. In addition, sporadic EOC tumours display signi?cant of loss of BRCA1 function due to epigenetic inactivation of the BRCA1 gene. This article reviews the preclinical and clinical evidence to support a role for BRCA1 as a potential predictive biomarker of response to both platinum and taxane based chemotherapy in EOC.
Methods: We conducted a Medline and Pubmed search for reports between 1990 and 2008 using the search terms: BRCA1 and hereditary ovarian cancer, BRCA1 and sporadic ovarian cancer, ovarian cancer and chemotherapy, ovarian cancer and taxanes, ovarian cancer and platinums, ovarian cancer and clinical response, BRCA1 and DNA damage, BRCA1 and DNA repair, BRCA1 and mitotic checkpoint. If reports identi?ed by these criteria referred to other papers not in the initial search, then these were also reviewed if relevant to BRCA1 and ovarian cancer.
Results: The BRCA1 pathway plays a signi?cant role in the development of both hereditary and sporadic EOC. Evidence suggests that BRCA1 is a potential biomarker of response to platinum chemotherapy in EOC with BRCA1 de?ciency predicting for enhanced response. In contrast, initial evidence suggests that loss of BRCA1 function results in reduced response to antimicrotubule-based chemotherapy. The ability of BRCA1 to differentially modulate response to these agents involves loss of BRCA1 mediated DNA repair and mitotic checkpoint control, respectively.
Conclusions: Standard ?rst line treatment of EOC consists of a combination of platinum and taxane chemotherapy, however clinically useful biomarkers for predicting response to these agents have yet to be established. BRCA1 may prove useful as a biomarker in EOC for assigning chemotherapy treatments based on the presence or absence of BRCA1 function.