113 resultados para HLA Antigens - genetics
Resumo:
Malone, C.A.T. and S.K.F. Stoddart, . (co-authored).
Resumo:
Recent studies have challenged the view that Langerhans cells (LCs) constitute the exclusive antigen-presenting cells of the skin and suggest that the dermal dendritic cell (DDC) network is exceedingly complex. Using knockin mice to track and ablate DCs expressing langerin (CD207), we discovered that the dermis contains five distinct DC subsets and identified their migratory counterparts in draining lymph nodes. Based on this refined classification, we demonstrated that the quantitatively minor CD207+ CD103+ DDC subset is endowed with the unique capability of cross-presenting antigens expressed by keratinocytes irrespective of the presence of LCs. We further showed that Y-Ae, an antibody that is widely used to monitor the formation of complexes involving I-Ab molecules and a peptide derived from the I-E alpha chain, recognizes mature skin DCs that express I-Ab molecules in the absence of I-E alpha. Knowledge of this extra reactivity is important because it could be, and already has been, mistakenly interpreted to support the view that antigen transfer can occur between LCs and DDCs. Collectively, these data revisit the transfer of antigen that occurs between keratinocytes and the five distinguishable skin DC subsets and stress the high degree of functional specialization that exists among them.
Resumo:
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T cell responses for Caf1. We characterized CD4 T cell epitopes of Caf1 in 'humanized'-HLA-DR1 transgenic mice lacking endogenous MHC class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T cell immunity was measured with respect to proliferative and IFNgamma T cell responses and recognition by a panel of T cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased towards a single immunodominant epitope near the C-terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Resumo:
Background— Cardiovascular risk estimation by novel biomarkers needs assessment in disease-free population cohorts, followed up for incident cardiovascular events, assaying the serum and plasma archived at baseline. We report results from 2 cohorts in such a continuing study.
Methods and Results— Thirty novel biomarkers from different pathophysiological pathways were evaluated in 7915 men and women of the FINRISK97 population cohort with 538 incident cardiovascular events at 10 years (fatal or nonfatal coronary or stroke events), from which a biomarker score was developed and then validated in the 2551 men of the Belfast Prospective Epidemiological Study of Myocardial Infarction (PRIME) cohort (260 events). No single biomarker consistently improved risk estimation in FINRISK97 men and FINRISK97 women and the Belfast PRIME Men cohort after allowing for confounding factors; however, the strongest associations (with hazard ratio per SD in FINRISK97 men) were found for N-terminal pro-brain natriuretic peptide (1.23), C-reactive protein (1.23), B-type natriuretic peptide (1.19), and sensitive troponin I (1.18). A biomarker score was developed from the FINRISK97 cohort with the use of regression coefficients and lasso methods, with selection of troponin I, C-reactive protein, and N-terminal pro-brain natriuretic peptide. Adding this score to a conventional risk factor model in the Belfast PRIME Men cohort validated it by improved c-statistics (P=0.004) and integrated discrimination (P<0.0001) and led to significant reclassification of individuals into risk categories (P=0.0008).
Conclusions— The addition of a biomarker score including N-terminal pro-brain natriuretic peptide, C-reactive protein, and sensitive troponin I to a conventional risk model improved 10-year risk estimation for cardiovascular events in 2 middle-aged European populations. Further validation is needed in other populations and age groups.
Resumo:
Despite the decline in coronary heart disease in many European countries, the disease remains an enormous public health problem. Although we know a great deal about environmental risk factors for coronary heart disease, a heritable component was recognized a long time ago. The earliest and best known examples of how our genetic constitution may determine cardiovascular risk relate to lipoprotein(a), familial hypercholesterolaemia and apolipoprotein E. In the past 20 years a fair number of polymorphisms assessed singly have shown strong associations with the disease but most are subject to poor repeatability. Twins constitute a compelling natural experiment to establish the genetic contribution to coronary heart disease and its risk factors. GenomEUtwin, a recently funded Framework 5 Programme of the European Community, affords the opportunity of comparing the heritability of risk factors in different European Twin Registries. As an illustration we present the heritabilities of systolic and diastolic blood pressure, based on data from over 4000 twin pairs from six different European countries and Australia. Heritabilities for systolic blood pressure are between 52 and 66% and for diastolic blood pressure between 44 and 66%. There is no evidence of sex differences in heritability estimates and very little to no evidence for a significant contribution of shared family environment. A non-twin based prospective case/cohort study of coronary heart disease and stroke (MORGAM) will allow hypotheses relating to cardiovascular disease, generated in the twin cohorts, to be tested prospectively in adult populations. Twin studies have also contributed to our understanding of the life course hypothesis, and GenomEUtwin has the potential to add to this.
Resumo:
A DNA typing procedure, based on a two stage polymerase chain reaction-sequence-specific oligonucleotide probe (PCR-SSOP) typing strategy, has been developed and applied to DNA from 1000 healthy individuals from the Northern Ireland region. The two-stage procedure involves human leukocyte antigen (HLA-C) identification through the use of a medium resolution PCR-SSOP system, followed by four secondary group specific PCR-SSOP systems, to enable allele resolution. The PCR-SSOP systems were designed for the identification of HLA-Cw alleles with possible discrimination within exons 2 and 3 of the HLA-C gene, i.e., HLA-Cw*01-Cw*16. PCR-SSP tests were designed for the resolution of HLA-Cw*17 and -Cw*18 alleles. The systems can also be used independently of each other if selective allele resolution is required. HLA-Cw allele frequencies occuring within the Northern Ireland population have been compiled, along with estimations of HLA-B/Cw haplotype frequencies. (C) American Society for Histocompatibility and Immunogenetics, 2002. Published by Elsevier Science Inc.