453 resultados para Gowrie Conspiracy, 1600.
Resumo:
Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.
Resumo:
Stable bisubstrate ligands of phosphoglycerate kinase (PGK) have been synthesised with AMP or ADP conjugated to hydrolytically-stable, symmetrical analogues of 1,3-bisphosphoglycerate and their binding to yeast PGK evaluated. Their Kds decrease with net negative charge, with a penta-anionic analogue 7 showing highest affinity - in accordance with its approximation to the transition state for the reaction catalysed by PGK.
Resumo:
Lights, camera, action! Photoswitchable nucleoside analogues containing o-, m-, or p-azobenzenes can be inserted in the catalytic core of RNA-cleaving 10-23 deoxyribozymes by replacing a nonconserved residue (see picture). Irradiation of the modified deoxyribozymes at 366 nm enhances RNA cleavage rates up to ninefold, thus achieving the rates observed for the unmodified deoxyribozyme.
Resumo:
A novel phosphoramidite, N,N-diisopropylamino-2-cyanoethyl-9-anthracenemethyl phosphoramidite 1, was prepared and coupled with the terminal 5'-hydroxyl of support-bound T10 and the putative phosphite triester intermediate was subsequently reacted with iodine in the presence of either water or a series of primary and secondary amines. The reactivity of 1 compared to a previously reported benzyl phosphoramidite 2 was also investigated: oxidation of the product of coupling 2 with CPG-T10-5'OH under aqueous conditions resulted in greater than 30% of the benzyl moiety being retained. In contrast, essentially complete loss of the 9-anthracenemethyl group was observed using 1 under the same conditions. Oligonucleotides modified with a terminal phosphate monoester, lipophilic, fluorescent or cationic groups were thus prepared.
Resumo:
A novel phosphoramidite; N,N-diisopropylamino-2-cyanoethyl-ortho-methylbenzylphosphoramidite 1, was prepared. The reaction of 1 with DMTrT and subsequent derivatisation of the phosphite triester product under solution-phase, Michaelis–Arbuzov conditions was investigated. Coupling of 1 with the terminal hydroxyl groups of support-bound oligodeoxyribonucleotides and subsequent reaction with an activated disulfide yielded oligonucleotides bearing a terminal, phosphorothiolate-linked, lipophilic moiety. The oligomers were readily purified using RP-HPLC. Silver(I)-mediated cleavage of the phosphorothiolate linkage and desalting of the oligonucleotides were performed readily in one step to yield cleanly the corresponding phosphate monester-terminated oligomers.