39 resultados para Geographical computer applications
Resumo:
Composite Applications on top of SAPs implementation of SOA (Enterprise SOA) enable the extension of already existing business logic. In this paper we show, based on a case study, how Model-Driven Engineering concepts are applied in the development of such Composite Applications. Our Case Study extends a back-end business process which is required for the specific needs of a demo company selling wine. We use this to describe how the business centric models specifying the modified business behaviour of our case study can be utilized for business performance analysis where most of the actions are performed by humans. In particular, we apply a refined version of Model-Driven Performance Engineering that we proposed in our previous work and motivate which business domain specifics have to be taken into account for business performance analysis. We additionally motivate the need for performance related decision support for domain experts, who generally lack performance related skills. Such a support should offer visual guidance about what should be changed in the design and resource mapping to get improved results with respect to modification constraints and performance objectives, or objectives for time.
Resumo:
Architecture Description Languages (ADLs) have emerged in recent years as a tool for providing high-level descriptions of software systems in terms of their architectural elements and the relationships among them. Most of the current ADLs exhibit limitations which prevent their widespread use in industrial applications. In this paper, we discuss these limitations and introduce ALI, an ADL that has been developed to address such limitations. The ALI language provides a rich and flexible syntax for describing component interfaces, architectural patterns, and meta-information. Multiple graphical architectural views can then be derived from ALI's textual notation.
Resumo:
With security and surveillance, there is an increasing need to be able to process image data efficiently and effectively either at source or in a large data networks. Whilst Field Programmable Gate Arrays have been seen as a key technology for enabling this, they typically use high level and/or hardware description language synthesis approaches; this provides a major disadvantage in terms of the time needed to design or program them and to verify correct operation; it considerably reduces the programmability capability of any technique based on this technology. The work here proposes a different approach of using optimised soft-core processors which can be programmed in software. In particular, the paper proposes a design tool chain for programming such processors that uses the CAL Actor Language as a starting point for describing an image processing algorithm and targets its implementation to these custom designed, soft-core processors on FPGA. The main purpose is to exploit the task and data parallelism in order to achieve the same parallelism as a previous HDL implementation but avoiding the design time, verification and debugging steps associated with such approaches.
Resumo:
Smart Grids are characterized by the application of information communication technology (ICT) to solve electrical energy challenges. Electric power networks span large geographical areas, thus a necessary component of many Smart Grid applications is a wide area network (WAN). For the Smart Grid to be successful, utilities must be confident that the communications infrastructure is secure. This paper describes how a WAN can be deployed using WiMAX radio technology to provide high bandwidth communications to areas not commonly served by utility communications, such as generators embedded in the distribution network. A planning exercise is described, using Northern Ireland as a case study. The suitability of the technology for real-time applications is assessed using experimentally obtained latency data.
Resumo:
Inherently error-resilient applications in areas such as signal processing, machine learning and data analytics provide opportunities for relaxing reliability requirements, and thereby reducing the overhead incurred by conventional error correction schemes. In this paper, we exploit the tolerable imprecision of such applications by designing an energy-efficient fault-mitigation scheme for unreliable data memories to meet target yield. The proposed approach uses a bit-shuffling mechanism to isolate faults into bit locations with lower significance. This skews the bit-error distribution towards the low order bits, substantially limiting the output error magnitude. By controlling the granularity of the shuffling, the proposed technique enables trading-off quality for power, area, and timing overhead. Compared to error-correction codes, this can reduce the overhead by as much as 83% in read power, 77% in read access time, and 89% in area, when applied to various data mining applications in 28nm process technology.
Resumo:
Several studies in the past have revealed that network end user devices are left powered up 24/7 even when idle just for the sake of maintaining Internet connectivity. Network devices normally support low power states but are kept inactive due to their inability to maintain network connectivity. The Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism to impersonate network connectivity on behalf of high power devices and enable them to sleep when idle without losing network presence. The NCP can efficiently proxy basic networking protocol, however, proxying of Internet based applications have no absolute solution due to dynamic and non-predictable nature of the packets they are sending and receiving periodically. This paper proposes an approach for proxying Internet based applications and presents the basic software architectures and capabilities. Further, this paper also practically evaluates the proposed framework and analyzes expected energy savings achievable under-different realistic conditions.
Resumo:
The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.