69 resultados para Finite difference simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Finite Difference Time Domain (FDTD) method is becoming increasingly popular for room acoustics simulation. Yet, the literature on grid excitation methods is relatively sparse, and source functions are traditionally implemented in a hard or additive form
using arbitrarily-shaped functions which do not necessarily obey the physical laws of sound generation. In this paper we formulate
a source function based on a small pulsating sphere model. A physically plausible method to inject a source signal into the grid
is derived from first principles, resulting in a source with a near-flat spectrum that does not scatter incoming waves. In the final
discrete-time formulation, the source signal is the result of passing a Gaussian pulse through a digital filter simulating the dynamics of the pulsating sphere, hence facilitating a physically correct means to design source functions that generate a prescribed sound field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton׳s equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton׳s method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The radiation efficiency and resonance frequency of five compact antennas worn by nine individual test subjects was measured at 2.45 GHz in a reverberation chamber. The results show that, despite significant differences in body mass, wearable antenna radiation efficiency had a standard deviation less than 0.6 dB and the resonance frequency shift was less than 1% between test subjects. Variability in the radiation efficiency and resonance frequency shift between antennas was largely dependant on body tissue coupling which is related to both antenna geometry and radiation characteristics. The reverberation chamber measurements were validated using a synthetic tissue phantom and compared with results obtained in a spherical near field chamber and finite-difference time-domain (FDTD) simulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 2D isothermal finite element simulation of the injection stretch-blow molding (ISBM) process for polyethylene terephthalate (PET) containers has been developed through the commercial finite element package ABAQUS/standard. In this work, the blowing air to inflate the PET preform was modeled through two different approaches: a direct pressure input (as measured in the blowing machine) and a constant mass flow rate input (based on a pressure-volume-time relationship). The results from these two approaches were validated against free blow and free stretch-blow experiments, which were instrumented and monitored through high-speed video. Results show that simulation using a constant mass flow rate approach gave a better prediction of volume vs. time curve and preform shape evolution when compared with the direct pressure approach and hence is more appropriate in modeling the preblowing stage in the injection stretch-blow molding process

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most single-reed woodwind instrument models rely on a quasistationary approximation to describe the relationship between the volume flow and. the pressure difference across the reed channel. Semiempirical models based on the quasistationary approximation are very useful in explaining the fundamental characteristics of this family of instruments such as self-sustained oscillations and threshold of blowing pressure. However, they fail at explaining more complex phenomena associated with the fluid-structure interaction during dynamic flow regimes, such as the transient and steady-state behavior of the system as a function. of the mouthpiece geometry. Previous studies have discussed the accuracy of the quasistationary approximation but the amount of literature on the subject is sparse, mainly due to the difficulties involved in the measurement of dynamic flows in channels with an oscillating reed. In this paper, a numerical technique based on the lattice Boltzmann method and a finite difference scheme is proposed in order to investigate the characteristics of fully coupled fluid-structure interaction in single-reed mouthpieces with different channel configurations. Results obtained for a stationary simulation with a static reed agree very well with those predicted by the literature based on the quasistationary approximation. However, simulations carried out for a dynamic regime with dn oscillating reed show that the phenomenon associated with flow detachment and reattachment diverges considerably frorn the theoretical assumptions. Furthermore, in the case of long reed channels, the results obtained for the vena contracta factor are in significant disagreement with those predicted by theory. For short channels, the assumption of constant vena contracta was found to be valid for only 40% of the duty cycle. (c) 2007 Acoustical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with the finite element simulation of debonding failures in FRP-strengthened concrete beams. A key challenge for such simulations is that common solution techniques such as the Newton-Raphson method and the arc-length method often fail to converge. This paper examines the effectiveness of using a dynamic analysis approach in such FE simulations, in which debonding failure is treated as a dynamic problem and solved using an appropriate time integration method. Numerical results are presented to show that an appropriate dynamic approach effectively overcomes the convergence problem and provides accurate predictions of test results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical sound synthesis is often carried out using the finite difference time domain method. In order to analyse the stability of the derived models, energy methods can be used for both linear and nonlinear settings. For Hamiltonian systems the existence of a conserved numerical energy-like quantity can be used to guarantee the stability of the simulations. In this paper it is shown how to derive similar discrete conservation laws in cases where energy is dissipated due to friction or in the presence of an energy source due to an external force. A damped harmonic oscillator (for which an analytic solution is available) is used to present the proposed methodology. After showing how to arrive at a conserved quantity, the simulation of a nonlinear single reed shows an example of an application in the context of musical acoustics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate and efficient grid based techniques for the solution of the time-dependent Schrodinger equation for few-electron diatomic molecules irradiated by intense, ultrashort laser pulses are described. These are based on hybrid finite-difference, Lagrange mesh techniques. The methods are applied in three scenarios, namely H-2(+) with fixed internuclear separation, H-2(+) with vibrating nuclei and H-2 with fixed internuclear separation and illustrative results presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We implement a parallel, time-dependent hybrid finite-difference Lagrange mesh code to model the electron dynamics of the fixed-nuclei hydrogen molecular ion subjected to intense ultrashort laser Pulses, Ionization rates are calculated and compared with results from a previous finite-difference approach and also with published Floquet results. The sensitivity of the results to the gauge describing the electron-field interaction is studied. Visualizations of the evolving wave packets are also presented in which the formation of a stable bound-state resonance is observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue-implanted ultra-high frequency (UHF) radio devices are being employed in both humans and animals for telemetry and telecommand applications, This paper describes the experimental measurement and electromagnetic modeling of propagation from 418-MHz and 916.5-MHz sources placed in the human vagina. Whole-body homogeneous and semi-segmented software models were constructed using data from the Visible Human Project. Bodyworn radiation efficiencies for a vaginally placed 418-MHz source were calculated using finite-difference time-domain and ranged between 1.6% and 3.4% (corresponding to net body losses of between 14.7 and 18.0 dB), Greater losses were encountered at 916.5 MHz, with efficiencies between 0.36% and 0.46% (net body loss ranging between 23.4 and 24.4 dB), Practical measurements were in good agreement with simulations, to within 2 dB at 418 MHz and 3 dB at 916.5 MHz. The degree of tissue-segmentation for whole-body models was found to have a minimal effect on calculated azimuthal radiation patterns and bodyworn radiation efficiency, provided the region surrounding the implanted source was sufficiently detailed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.