47 resultados para Fatigue crack growth behavior
Resumo:
Fiber-reinforced polymer (FRP) hollow tubes are used in structural applications, such as utility poles and pipelines. Concrete-filled FRP tubes (CFFTs) are also used as piles and bridge piers. Applications such as poles and marine piles are typically governed by cyclic bending. In this paper, the fatigue behavior of glass-FRP filament-wound tubes is studied using coupons cut from the tubes. Several coupon configurations were first examined in 24 tension and five compression monotonic loading tests. Fatigue tests were then conducted on 81 coupons to examine several parameters; namely, loading frequency as well as maximum-to-ultimate (max ult) and minimum-to-maximum (min max) stress ratios, including tension tension and tension compression, to simulate reversed bending. The study demonstrated the sensitivity of test results and failure mode to coupon configuration. The presence of compression loads reduced fatigue life, while increasing load frequency increased fatigue life. Stiffness degradation behavior was also established. To achieve at least one million cycles, it is recommended to limit (max ult) to 0.25. Models were used to simulate stiffness degradation and fatigue life curve of the tube. Fatigue life predictions of large CFFT beams showed good correlation with experimental results. © 2008 ASCE.
Resumo:
Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.
Resumo:
Desiccation crack formation is a key process that needs to be understood in assessment of landfill cap performance under anticipated future climate change scenarios. The objectives of this study were to examine: (a) desiccation cracks and impacts that roots may have on their formation and resealing, and (b) their impacts on hydraulic conductivity under anticipated climate change precipitation scenarios. Visual observations, image analysis of thin sections and hydraulic conductivity tests were carried out on cores collected from two large-scale laboratory trial landfill cap models (∼80 × 80 × 90 cm) during a year of four simulated seasonal precipitation events. Extensive root growth in the topsoil increased percolation of water into the subsurface, and after droughts, roots grew deep into low-permeability layers through major cracks which impeded their resealing. At the end of 1 year, larger cracks had lost resealing ability and one single, large, vertical crack made the climate change precipitation model cap inefficient. Even though the normal precipitation model had developed desiccation cracks, its integrity was preserved better than the climate change precipitation model.
Resumo:
The incorporation of active pharmaceutical ingredients (APIs) into multicomponent solid forms (such as salts and co-crystals) or liquid forms (such as ionic liquids (ILs) or deep eutectic mixtures) is important in optimizing the efficacy and delivery of APIs. However, there is a current debate regarding the classification of these multicomponent systems based on their ionicity which could interfere with their consideration in important applications. Multicomponent systems of intermediate ionicity can show a combination of properties, leading to behavior that is neither strictly typical of either purely ionic or purely neutral compounds, nor easily described as intermediate between the two. In this perspective, we attempt to illustrate the problems in classifying multicomponent APIs based on one of two categories by discussing selected literature regarding solid and liquid multicomponent APIs and presenting the crystal structures of some relevant systems as case studies. It is clear that a focus on restrictive nomenclature carries with it the risk that a thorough examination of the physicochemical properties of the compounds will be overlooked.
Resumo:
Versican is a hyaluronan-binding, extracellular chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The short V3 isoform contains the G1 and G3 terminal domains of versican that may potentially interact directly or indirectly with the hyaluronan receptor CD44 and the EGFR, respectively. We have previously described that overexpression of V3 in MeWo human melanoma cells markedly reduces tumor cell growth in vitro and in vivo. In this study we have investigated the signaling mechanism of V3 by silencing the expression of CD44 in control and V3-expressing melanoma cells. Suppression of CD44 had the same effects on cell proliferation and cell migration than those provoked by V3 expression, suggesting that V3 acts through a CD44-mediated mechanism. Furthermore, CD44-dependent hyaluronan internalization was blocked by V3 expression and CD44 silencing, leading to an accumulation of this glycosaminoglycan in the pericellular matrix and to changes in cell migration on hyaluronan. Furthermore, ERK1/2 and p38 activation after EGF treatment were decreased in V3-expressing cells suggesting that V3 may also interact with the EGFR through its G3 domain. The existence of a EGFR/ErbB2 receptor complex able to interact with CD44 was identified in MeWo melanoma cells. V3 overexpression resulted in a reduced interaction between EGFR/ErbB2 and CD44 in response to EGF treatment. Our results indicate that the V3 isoform of versican interferes with CD44 and the CD44-EGFR/ErbB2 interaction, altering the signaling pathways, such as ERK1/2 and p38 MAPK, that regulate cell proliferation and migration.
Resumo:
The kelp Laminaria hyperborea is a dominant component of the subtidal nearshore ecosystem and is subjected to a heterogeneous wave and current climate. Water motion is known to influence physiological processes in macroalgae such as photosynthesis and nutrient uptake attributed to mass-transfer limitation. The study attempts to establish the effect of water motion on the growth rates of blades and elongation rates of the stipes of L. hyperborea at adjacent wave-exposed and wave-sheltered locations over a 12month period from field observations. The observations were supported by detailed physical and chemical measurements (light, temperature, seawater nutrient concentrations and hydrodynamics) and of tissue carbon and nitrogen concentrations together with δ13carbon. Despite a 30% difference in the root mean square of the velocity (Velrms) between the two survey locations, there was no evidence to suggest that water motion had any direct influence on the growth rates of either the blades or elongation of stipes of L. hyperborea. No significant differences were observed between either environmental or plant physiological variables between the sheltered and exposed locations. Using an integral velocity parameter (Velrms) the present study also highlighted the importance of the tidally induced current component of water flow in the subtidal zone.
Resumo:
The plain fatigue and fretting fatigue tests of Ti-1023 titanium alloy were performed using a high-frequency push-pull fatigue testing machine. Both σmax versus number of cycles to failure curves were obtained for comparative analysis of the fretting effect on fatigue performance of the titanium alloy. Meanwhile, by analyzing the fracture of plain fatigue and fretting fatigue, the fretting scar and the fretting debris observed by scanning electron microscopy (SEM), the mechanism of fretting fatigue failure of Ti-1023 titanium alloy is discussed. The fretting fatigue strength of Ti-1023 titanium alloy is 175 MPa under 10 MPa contact pressure, which is 21% of plain fatigue strength (836 MPa). Under fretting condition, the Ti-1023 titanium alloy fatigue fracture failure occurs in a shorter fatigue life. When it comes to σmax versus number of cycles to failure curves, data points in the range of 106–107 cycles under plain fatigue condition moved to the range of 105–106 under fretting fatigue condition. The integrity of the fatigue specimen surface was seriously damaged under the effect of fretting. With the alternating stress loaded on specimen, the stress concentrated on the surface of fretting area, which brought earlier the initiation and propagation of crack.
Resumo:
The effects of temperature (5-50°C), water availability (0.998-0.88 water activity, aw), and aw × temperature interactions (15-45°C) on growth of three entomogenous fungi, Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus, were evaluated on a Sabouraud dextrose-based medium modified with the ionic solute KCl, the non-ionic solute glycerol, and an inert solute, polyethylene glycol (PEG) 600. The temperature ranges for growth of B. bassiana, M. anisopliae, and P. farinosus were 5-30, 5-40, and 5-30°C, and optimum growth temperatures were 25, 30, and 20°C, respectively. All three species grew over a similar aw range (0.90-0.998) at optimum temperatures for growth. However, there were significant interspecies variations in growth rates on media modified with each of the three aw-modifying solutes. Growth aw optima ranged between 0.99 and 0.97 on KCl-, glycerol-, and PEG 600-modified media for M. anisopliae and P. farinosus. B. bassiana grew optimally at 0.998 aw, regardless of aw. Comprehensive two-dimensional profiles of aw × temperature relations for growth of these three species were constructed for the first time. The results are discussed in relation to the environmental limits that determine efficacy of entomogenous fungi as biocontrol agents in nature. © 1999 Academic Press.
Resumo:
The search for ideal biomaterials is still on-going for tissue regeneration. In this study, blends of Poly ε-caprolactone (PCL) with Poly l-lactic acid (PLLA), Nalidixic Acid (NA) and Polyethylene glycol (PEG) were prepared. Mechanical and thermal properties of the blends were investigated by tensile and flexural analysis, DSC, TGA, WXRD, MFI, BET, SEM and hot stage optical microscopy. Results showed that the loading of PLLA caused a significant decrease in tensile strength and almost total eradication of the elongation at break of PCL matrix, especially after PEG and NA addition. Increased stiffness was also noted with additional NA, PEG and PLLA, resulting in an increase in the flexural modulus of the blends.
Isothermal degradation indicated that bulk PCL, PLLA and the blends were thermally stable at 200°C for the duration of 2h making extrusion of the blends at this temperature viable. Morphological study showed that increasing the PLLA content and addition of the very low viscosity PEG and powder NA decreased the Melt Flow Indexer and increased the viscosity.
At the higher temperature the PLLA begins to soften and eventually melts allowing for increased flow and, coupling this with, the natural increase in MFI caused by temperature is enhanced further. The PEG and NA addition increased dramatically the pore volume which is important for cell growth and flow transport of nutrients and metabolic waste.
Resumo:
The timing of thyroxine (T4) replacement treatment in congenital hypothyroidism (CH) has been suggested to be important for optimizing cognitive recovery in humans; however this has not been fully established using modern animal models of CH. Consequently, the current studies investigated the ameliorating effects of postnatal T4 treatment on neuropathology and behavior in CH rats. Rat dams were administered methimazole to produce CH offspring, then brain tissue from male CH pups was analyzed to determine the effects of postnatal (P3, P7, P14 and P21) T4 treatment on hippocampal dendritic branching and the expression of nerve growth factor (NGF). Two operant behavioral procedures were employed to confirm and extend previous findings obtained using this model, and to investigate timelines for instigating T4 treatment on improved behavioral outcomes. T4 treatment initiated at P14 was protective of a reduction in dendritic branching in the hippocampus, and initiated at P7 was protective of a reduction of NGF expression in the fimbria of the hippocampus. Induction of CH did not affect the acquisition of simple operant response rules but had a significant effect on the acquisition of complex operant rules subsequently imposed. Furthermore, T4 treatment initiated at P3 protected learning deficits seen following the imposition of complex operant response rules. These findings indicate T4 treatment initiated at P7 is sufficient for the protection of hippocampal NGF expression and dendritic branching but for the protection of complex behavioral abilities T4 treatment is necessary prior to or approximating P3.
Resumo:
This paper investigates the mechanism of nanoscale fatigue of functionally graded TiN/TiNi films using nano-impact and multiple-loading-cycle nanoindentation tests. The functionally graded films were deposited on silicon substrate, in which TiNi films maintain shape memory and pseudo elastic behavior, while a modified TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to comprehend the localized film performance and failure modes of the functionally graded film using NanoTestTM equipped with Berkovich and conical indenter between 100 μN to 500 mN loads. The loading mechanism and load history are critical to define film failure modes (i.e. backward depth deviation) including the shape memory effect of the functionally graded layer. The results are sensitive to the applied load, loading type (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it is concluded that the shape of the nanoindenter is critical in inducing the localized indentation stress and film failure, including shape recovery at the lower load range. Elastic-plastic finite element (FE) simulation during nanoindentation loading indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure. A standalone, molecular dynamics simulation was performed with the help of a long range potential energy function to simulate the tensile test of TiN nanowire with two different aspect ratios to investigate the theory of its failure mechanism.
Resumo:
BACKGROUND AND OBJECTIVE: Children who experienced intrauterine growth restriction (IUGR) may be at increased risk for adverse developmental outcomes in early childhood. The objective of this study was to carry out a systematic review of neurodevelopmental outcomes from 6 months to 3 years after IUGR.
METHODS: PubMed, Embase, PsycINFO, Maternity and Infant Care, and CINAHL databases were searched by using the search terms intrauterine, fetal, growth restriction, child development, neurodevelopment, early childhood, cognitive, motor, speech, language. Studies were eligible for inclusion if participants met specified criteria for growth restriction, follow-up was conducted within 6 months to 3 years, methods were adequately described, non-IUGR comparison groups were included, and full English text of the article was available. A specifically designed data extraction form was used. The methodological quality of included studies was assessed using well-documented quality-appraisal guidelines.
RESULTS: Of 731 studies reviewed, 16 were included. Poorer neurodevelopmental outcomes after IUGR were described in 11. Ten found motor, 8 cognitive, and 7 language delays. Other delays included social development, attention, and adaptive behavior. Only 8 included abnormal Doppler parameters in their definitions of IUGR.
CONCLUSIONS: Evidence suggests that children are at risk for poorer neurodevelopmental outcomes following IUGR from 6 months to 3 years of age. The heterogeneity of primary outcomes, assessment measures, adjustment for confounding variables, and definitions of IUGR limits synthesis and interpretation. Sample sizes in most studies were small, and some examined preterm IUGR children without including term IUGR or AGA comparison groups, limiting the value of extant studies.
Resumo:
The low cycle fatigue (LCF) properties and the fracture behavior of China Low Activation Martensitic (CLAM) steel have been studied over a range of total strain amplitudes from 0.2 to 2.0%. The specimens were cycled using tension-compression loading under total strain amplitude control. The CLAM steel displayed initial hardening followed by continuous softening to failure at room temperature in air. The relationship between strain and fatigue life was predicted using the parameters obtained from fatigue test. The factors effecting on low cycle fatigue of CLAM steel consisted of initial state of matrix dislocation arrangement, magnitude of cyclic stress, magnitude of total strain amplitude and microstructure. The potential mechanisms controlling the stress response, cyclic strain resistance and low cycle fatigue life have been evaluated.
Resumo:
Because of the requirements for the damage tolerance and fatigue life of commercial aircraft components, the high cycle fatigue (HCF) properties of Ti–5Al–5Mo–5V–1Cr–1Fe titanium alloy forgings are important. The effects of microstructure types of the α+β titanium alloy on fatigue properties need to be understood. In this paper, by analysing the fracture surfaces of the titanium alloy having four types of microstructure, the effects of microstructure are investigated. The differences of initiation areas and crack propagation among different microstructures were studied. It was found that the area of the initiation region decreases in the order of coarse basketweave, fine basketweave, Widmanstätten, and bimodal microstructure.
Resumo:
While the repeated nature of Discrete Choice Experiments is advantageous from a sampling efficiency perspective, patterns of choice may differ across the tasks, due, in part, to learning and fatigue. Using probabilistic decision process models, we find in a field study that learning and fatigue behavior may only be exhibited by a small subset of respondents. Most respondents in our sample show preference and variance stability consistent with rational pre-existent and
well formed preferences. Nearly all of the remainder exhibit both learning and fatigue effects. An important aspect of our approach is that it enables learning and fatigue effects to be explored, even though they were not envisaged during survey design or data collection.