151 resultados para Espalhamento - Raman
Resumo:
The purpose of this tutorial review is to show how surface-enhanced Raman (SERS) and resonance Raman (SERRS) spectroscopy have evolved to the stage where they can be used as a quantitative analytical technique. SER(R)S has enormous potential for a range of applications where high sensitivity needs to be combined with good discrimination between molecular targets, particularly since low cost, compact spectrometers can read the high signal levels that SER(R)S typically provides. These advantages over conventional Raman measurements come at the cost of increased complexity and this review discusses the factors that need to be controlled to generate stable and reproducible SER(R)S calibrations.
Resumo:
2,5,-Dimethoxy-4-bromoamphetamine (DOB) is of particular interest among the various
Raman spectroscopic analysis of chlorhexidine-myristic acid interaction in methacrylate biomaterials
Resumo:
The ability of Raman spectroscopy and Fourier transform infrared (FT-IR) microscopy to discriminate between resins used for the manufacture of architectural finishes was examined in a study of 39 samples taken from a commercial resin library. Both Raman and FT-IR were able to discriminate between different types of resin and both split the samples into several groups (six for FT-IR, six for Raman), each of which gave similar, but not identical, spectra. In addition, three resins gave unique Raman spectra (four in FTIR). However, approximately half the library comprised samples that were sufficiently similar that they fell into a single large group, whether classified using FT-IR or Raman, although the remaining samples fell into much smaller groups. Further sub-division of the FT-IR groups was not possible because the experimental uncertainty was of similar magnitude to the within-group variation. In contrast, Raman spectroscopy was able to further discriminate between resins that fell within the same groups because the differences in the relative band intensities of the resins, although small, were larger than the experimental uncertainty.
Resumo:
Dipicolinic acid (DPA) is an excellent marker compound for bacterial spores, including those of Bacillus anthracis ( anthrax). Surface-enhanced Raman spectroscopy (SERS) potentially has the sensitivity and discrimination needed for trace DPA analysis, but mixing DPA solutions with citrate-reduced silver colloid only yielded measurable SERS spectra at much higher (> 80 ppm) concentrations than would be desirable for anthrax detection. Aggregation of the colloid with halide salts eliminated even these small DPA bands but aggregation with Na2SO4(aq) resulted in a remarkable increase in the DPA signals. With sulfate aggregation even 1 ppm solutions gave detectable signals with 10 s accumulation times, which is in the sensitivity range required. Addition of CNS- as an internal standard allowed quantitative DPA analysis, plotting the intensity of the strong DPA 1010 cm(-1) band (normalised to the ca. 2120 cm(-1) CNS- band) against DPA concentration gave a linear calibration (R-2 = 0.986) over the range 0 - 50 ppm DPA. The inclusion of thiocyanate also allows false negatives due to accidental deactivation of the enhancing medium to be detected.
Resumo:
The potential of Raman spectroscopy to discriminate between architectural finishes (household paint) has been investigated using a test set of 51
Resumo:
Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I-nic/I-pyr against the concentration of nicotine were non-linear but plotting I-nic/I-pyr against [nicotine](x) (x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R-2 typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.
Resumo:
The free-base form of tetra-tert-butyl porphine (TtBP), which has extremely bulky meso substituents, is severely distorted from planarity, with a ruffling angle of 65.5degrees. The resonance Raman spectrum of TtBP (lambda(ex) = 457.9 nm) and its d(2), d(8), and d(10) isotopomers have been recorded, and while the spectra show high-frequency bands similar to those observed for planar meso-substituted porphyrins, there are several additional intense bands in the low-frequency region. Density functional calculations at the B3-LYP/6-31G(d) level were carried out for all four isotopomers, and calculated frequencies were scaled using a single factor of 0.98. The single factor scaling approach was validated on free base porphine where the RMS error was found to be 14.9 cm(-1). All the assigned bands in the high-frequency (> 1000 cm(-1)) region of TtBP were found to be due to vibrations similar in character to the in-plane skeletal modes of conventional planar porphyrins. In the low-frequency region, two of the bands, assigned as nu(8) (ca. 330 cm(-1)) and nu(16) (ca. 540 cm(-1)), are also found in planar porphyrins such as tetra-phenyl porphine (TPP) and tetra-iso-propyl porphine (IPP). Of the remaining three very strong bands, the lowest frequency band was assigned as gamma(12) (pyr swivel, obsd 415 cm(-1), calcd 407 cm(-1) in do). The next band, observed at 589 cm-1 in the do compound (calcd 583 cm(-1)), was assigned as a mode whose composition is a mixture of modes that were previously labeled gamma(13) (gamma(CmCaHmCa)) andy gamma(11) (pyr fold(asym)) in NiOEP. The final strong band, observed at 744 cm(-1) (calcd 746 cm(-1)), was assigned to a mode whose composition is again a mixture of gamma(11) and gamma(13), although here it is gamma(11) rather than gamma(13) which predominates. These bands have characters and positions similar to those of three of the four porphyrin ring-based, weak bands that have previously been observed for NiTPP. In addition there are several weaker bands in the TtBP spectra that are also
Resumo:
Large numbers of identical and stable SE(R)RS [surface-enhanced (resonance) Raman]-active media, which are convenient to handle and manipulate but sufficiently inexpensive that they can be used once and then discarded, have been prepared by isolating nanoparticles from Ag and Au sols in hydrophilic polymer gels. The preparation simply involves mixing a suitable polymer with the sol to give a viscous suspension that can be coated onto a substrate and dried to form a hard translucent film. The films remain inactive until they are treated with aqueous analyte solution, which causes the film to swell and brings the analyte into contact with the active metal particles. The swollen films give strong SERS spectra which are effectively identical to those obtained from simple sols. The advantage of this method is that the dried polymers can be stored indefinitely before use and that they give a high degree of spectral reproducibility.
Resumo:
Previous work by the authors Walker et al. [2007b. Fluidised bed characterisation using Raman spectroscopy: applications to pharmaceutical processing. Chemical Engineering Science 62, 3832–3838] illustrated that Raman spectroscopy could be used to provide 3-D maps of the concentration and chemical structure of particles in motion in a fluidised bed, within a relatively short (120 s) time window. Moreover, we reported that the technique, as outlined, has the potential to give detailed in-situ information on how the structure and composition of granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. In this study we extended the original work by shortening the time window of the Raman spectroscopic analysis to 10 s, which has allowed the in-situ real-time characterisation of a fluidised bed granulation process. Here we show an important new use of the technique which allows in-situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra using a probe positioned within the fluidised bed on a long-travel x–y–z stage. In these experiments the absolute Raman intensity is used to provide a direct measure of the amount of any given material in the probed volume, i.e. a particle density. Particle density profiles have been calculated over the granulation time and show how the volume of the fluidised bed decreases with an increase mean granule size. The Raman spectroscopy analysis indicated that nucleation/coalescence in this co-melt fluidised hot melt granulation system occurred over a relatively short time frame (t<30 s). The Raman spectroscopic technique demonstrated accurate correlation with independent granulation experiments which provided particle size distribution analysis. The similarity of the data indicates that the Raman spectra accurately represent solids ratios within the bed, and thus the techniques quantitative capabilities for future use in the pharmaceutical industry.
Resumo:
Raman satellites have been observed in the scattering of a Nd:YAG laser (532 nm) from a laser-ablated Mg plasma plume. We identify them as originating from transitions between the fine-structure components of the metastable 3s3p P-3(0,1,2) level of Mg. We have calculated the cross sections for Raman and Rayleigh scattering from the metastable state. Comparison of the expected ratio of the satellites to the Rayleigh peak indicates the changing population fraction of the metastable states in the plume.
Resumo:
The influence of ageing and cooking on the Raman spectrum of porcine longissimus dorsi was investigated. The rich information contained in the Raman spectrum was highlighted, with numerous changes attributed to changes in the environment and conformations of the myofibrillar proteins.
Resumo:
Lung cancer is the most common cause of cancer death. The conventional method of confirming the diagnosis is bronchoscopy, inspecting the airways of the patient with a fiber optic endoscope. A number of studies have shown that Raman spectroscopy can diagnose lung cancer in vitro. In this study, Raman spectra were obtained from ex vivo normal and malignant lung tissue using a minifiber optic Raman probe suitable for insertion into the working channel of a bronchoscope. Shifted subtracted Raman spectroscopy was used to reduce the fluorescence from the lung tissue. Using principal component analysis with a leave-one-out analysis, the tissues were classified accurately. This novel technique has the potential to obtain Raman spectra from tumors from patients with lung cancer in vivo.