129 resultados para Electron beam evaporations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of a stream of high-energy electrons with the background plasma plays an important role in the astrophysical phenomena such as interplanetary and stellar bow shock and Earth's foreshock emission. It is not yet fully understood how electrostatic solitary waves are produced at the bow shock. Interestingly, a population of energetic suprathermal electrons were also found to exist in those environments. Previously, we have studied the properties of negative electrostatic potential solitary structures exist in such a plasma with excess suprathermal electrons. In the present study, we investigate the existence conditions and propagation properties of electron-acoustic solitary waves in a plasma consisting of an electron beam fluid, a cold electron fluid, and hot suprathermal electrons modeled by a kappa-distribution function. The Sagdeev pseudopotential method was used to investigate the occurrence of stationary-profile solitary waves. We have determined how the electron-acoustic soliton characteristics depend on the electron beam parameters. It is found that the existence domain for solitons becomes narrower with an increase in the suprathermality of hot electrons, increasing the beam speed, decreasing the beam-to-cold electron population ratio. These results lead to a better understanding of the formation of electron-acoustic solitary waves observed in those space plasma systems characterized by kappa-distributed electrons and inertial drifting (beam) electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the existence conditions and propagation properties of electron-acoustic solitary waves in a plasma consisting of an electron beam fluid, a cold electron fluid, and a hot suprathermal electron component modeled by a k-distribution function. The Sagdeev pseudopotential method was used to investigate the occurrence of stationary-profile solitary waves. We have determined how the soliton characteristics depend on the electron beam parameters. It is found that the existence domain for solitons becomes narrower with an increase in the suprathermality of hot electrons, increasing the beam speed, and decreasing the beam-to-cold electron population ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the medical fields of bone fixation devices and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), L-lactide/ DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid) (PLGA). This work investigates the further potential of e-beam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. A Dynamatron Continuous DC e-beam unit (Synergy Health, UK), with beam energies of 0.5, 0.75, and 1.5 MeV, was used for the irradiation of PLLA samples with delivered surface doses of 150 or 500 kGy at each energy level. The chosen conditions reflect the need to achieve a specific surface modification for the control of surface degradation as demonstrated in previous work. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy.
Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment. In conclusion electron beam surface modification has been found to modify both the surface-to-bulk bioresorption profile and the surface hydrophilicity. Both could provide benefits in relation to the performance of implantable medical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collimated transport of fast electron beam through solid density matter is one of the key issues behind the success of the fast ignition scheme by means of which the required amount of ignition energy can be delivered to the hot spot region of the compressed fuel. Here we report on a hot electron beam collimation scheme in solids by tactfully using the strong magnetic fields generated by an electrical resistivity gradient according to Faraday's law. This was accomplished by appropriately fabricating the targets in such a way that the electron beam is directed to flow in a metal which is embedded in a much lower resistivity and atomic number metal. Experimental results showed guided transport of hot electron beam over hundreds of microns length inside solid density plasma, which were obtained from two experiments examining the scheme for petawatt laser driven hot electron beam while employing various target configurations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electron impact ionization cross sections of hydrogen-like molybdenum ions were measured with an electron beam ion trap at the electron energies of 49.4, 64.4 and 79.6 keV The results are 2.82(22) x 10(-23), 3.13(29) x 10(-23) and 3.23(51) x 10(-23) cm(2), respectively. These results are compared with the experimental results measured previously. The agreement with the results obtained with, scaling formulae is also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electron-impact ionization cross sections have been determined for hydrogen like iron ions at selected electron energies between 1.45 and 4.3 times the threshold energy. The cross sections were obtained by measuring the equilibrium ionization balance in an electron beam ion trap. This ionization balance is obtained from x-ray measurements of radiative recombination into the K-shell of hydrogen-like and bare iron ions. The measured cross sections are compared with distorted-wave calculations and several semiempirical formulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The conceptual design of a new electron beam ion trap primarily intended for the study of electron-ion interactions is outlined along with some preliminary predictions regarding its capabilities. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have measured electron impact ionization cross-sections of hydrogen-like iron and hydrogen-like molybdenum with an electron beam ion trap. The measurements were performed in the electron energy range between 13.5 and 40 keV for hydrogen-like iron and between 50 and 80 keV for hydrogen-like molybdenum. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An electron beam ion trap ( EBIT) has been designed and is currently under construction for use in atomic physics experiments at the Queen's University, Belfast. In contrast to traditional EBITs where pairs of superconducting magnets are used, a pair of permanent magnets will be used to compress the electron beam. The permanent magnets have been designed in conjunction with bespoke vacuum ports to give unprecedented access for photon detection. Furthermore, the bespoke vacuum ports facillitate a versatile, reconfigurable trap structure able to accommodate various in-situ detectors and in-line charged particle analysers. Although the machine will have somewhat lower specifications than many existing EBITs in terms of beam current density, it is hoped that the unique features will facilitate a number of hitherto impossible studies involving interactions between electrons and highly charged ions. In this article the new machine's design is outlined along with some suggestions of the type of process to be studied once the construction is completed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The two-electron QED contributions to the ground-state binding energy of Kr34+ ions have been determined in two independent experiments performed with electron beam ion traps (EBIT) in Heidelberg (HD) and Tokyo (BT, Belfast-Tokyo collaboration). X rays arising from radiative recombination (RR) of free electrons to the ground state of initially bare Kr36+ and hydrogenlike Kr35+ ions were observed as a function of the interacting electron energy. The K edge absorption by thin Eu and W foils provided fixed photon energy references used to measure the difference in binding energy Delta E-2e between the H- and He-like Kr ions (Kr35+ and Kr34+, respectively). The two values agree well, yielding a final result of Delta E-2e=641.8 +/- 1.7 eV, confirming recent results of rigorous QED calculations. This accuracy is just of the order required to access screened radiative QED contributions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The string mode of operation for an electron beam ion source uses axially oscillating electrons in order to reduce power consumption, also simplifying the construction by omitting the collector with cooling requirements and has been called electron string ion source (ESIS). We have started a project (supported by INTAS and GSI) to use Schottky field emitting cathode tips for generating the electron string. The emission from these specially conditioned tips is higher by orders of magnitude than the focused Brillouin current density at magnetic fields of some Tesla and electron energies of some keV. This may avoid the observed instabilities in the transition from axially oscillating electrons to the string state of the electron plasma, opening a much wider field of possible operating parameters for an ESIS. Besides the presentation of the basic features, we emphasize in this paper a method to avoid damaging of the field, emission tip by backstreaming ions. (C) 2008 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have measured the two-electron contribution of the ground state energy of helium-like argon ions using an electron beam ion trap (EBIT). A two-dimensional map was measured showing the intensity of x-rays from the trap passing through a krypton-filled absorption cell. The independent axes of this map were electron beam energy and x-ray energy. From this map, we deduced the two-electron contribution of the ground state of helium-like argon. This experimentally determined Value (312.4 +/- 9.5 eV) was found to be in good agreement with our calculated values (about 303.35 eV) and previous calculations of the same quantity. Based on these measurements, we have shown that a ten-day absorption spectroscopy run with a super-EBIT should be sufficient to provide a new benchmark value for the two-electron contribution to the ground state of helium-like krypton. Such a measurement would then constitute a test of quantum electrodynamics to second order.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results from a joint experimental and theoretical study of electron attachment to chloroform (CHCl3) molecules in the gas phase are reported. In an electron swarm study involving a pulsed Townsend technique with equal gas and electron temperatures, accurate attachment rate coefficients were determined over the temperature range 295-373 K; they show an Arrhenius-type rise with increasing temperature, corresponding to an activation energy of 0.11 (1) eV. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for Cl- formation from CHCl3 over the energy range 0.001-1.25 eV at the gas temperature T-G = 300 K was measured. It exhibits clear downward cusp structure at the threshold for excitation of one quantum of the vibrational symmetric deformation mode nu(3), indicating that this mode is active in the primary attachment process. With reference to our thermal attachment rate coefficient k(T = 300 K) = 3.9(2) x 10(-9) cm(3) s(-1), a new highly resolved absolute attachment cross section for T-G = 300 K was determined. This cross section is extended to higher energies by measurements, carried out with a pulsed electron beam apparatus which also provided new data for the distinctly weaker fragment anions HCl2- and CCl2-. The resulting total absolute cross section for anion formation is used to calculate the dependence of the attachment rate coefficient k(T-e;T-G) on electron temperature T-e over the range 50-15000 K at the fixed gas temperature T-G = 300 K. In addition, we report the dependence of the relative cross section for Cl- formation on gas temperature T-G = 310-435 K). For comparison with the experimental data, R-matrix calculations have been carried out for the dominant anion channel Cl-. The results recover the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3) and on the vibrational temperature. Our results are compared with those of previous electron beam and electron swarm experiments.