47 resultados para Discharges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A description of the radiation emitted by impurities from within a plasma is crucial if spectral line intensities are to be used in detailed studies, such as the analysis of impurity transport. The simplest and most direct check that can be made on measurements of line intensities is to analyse their ratios with other lines from the same ion. This avoids uncertainties in determining the volume of the emitting plasma and the absolute sensitivity calibration of the spectrometer and, in some cases, the need even for accurate measurements of parameters such as electron density. Consistency is required between the measured line intensity ratios and the theoretical values. The expected consistency has not been found for radiation emitted from the JET scrape-off layer (e.g. Lawson et al 2009a JINST 4 P04013), meaning that the description of the spectral line intensities of impurity emission from the plasma edge is incomplete. In order to gain further understanding of the discrepancies, an analysis has been carried out for emission from the JET divertor plasma and this is reported in this paper. Carbon was the main low Z intrinsic impurity in JET and an analysis of spectral line intensity ratios has been made for the C (IV) radiation emitted from the JET divertor. In this case, agreement is found between the measured and theoretical ratios to a very high accuracy, namely to within the experimental uncertainty of similar to +/- 10%. This confirms that the description of the line intensities for the present observations is complete. For some elements and ionization stages, an analysis of line intensity ratios can lead to the determination of parameters such as the electron temperature of the emitting plasma region and estimates of the contribution of recombination to the electron energy level populations. This applies to C (IV) and, to show the value and possibilities of the spectral measurements, these parameters have been calculated for a database of Ohmic and additionally heated phases of a large number of pulses. The importance of dielectronic, radiative and charge-exchange recombination as well as ionization has been investigated. In addition, the development of T-e throughout two example discharges is illustrated. The presented results indicate a number of areas for further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm (similar to 0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is demonstrated that spatio-temporally resolved emission studies of a capacitively coupled gaseous electronics conference reference cell discharge can be used to determine changes in the heating mechanisms in such discharges.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A time-resolved Langmuir probe technique is used to measure the dependence of the electron density, electron temperature, plasma potential and electron energy distribution function (EEDF) on the phase of the driving voltage in a RF driven parallel plate discharge. The measurements were made in a low-frequency (100-500 kHz), symmetrically driven, radio frequency discharge operating in H-2, D-2 and Ar at gas pressures of a few hundred millitorr. The EEDFs could not be represented by a single Maxwellian distribution and resembled the time averaged EEDFs reported in 13.56 MHz discharges. The measured parameters showed structure in their spatial and temporal dependence, generally consistent with a simple oscillating sheath model. Electron temperatures of less than 0.1 eV were measured during the phase of the RF cycle when both electrodes are negative with respect to the plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparisons between experimentally measured time-dependent electron energy distribution functions and optical emission intensities are reported for low-frequency (100 and 400 kHz) radio-frequency driven discharges in argon. The electron energy distribution functions were measured with a time-resolved Langmuir probe system. Time-resolved optical emissions of argon resonance lines at 687.1 and 750.4 nm were determined by photon-counting methods. Known ground-state and metastable-state excitation cross sections were used along with the measured electron energy distribution functions to calculate the time dependence of the optical emission intensity. It was found that a calculation using only the ground-state cross sections gave the best agreement with the time dependence of the measured optical emission. Time-dependent electron density, electron temperature, and plasma potential measurements are also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental and theoretical electron energy distribution functions (EEDFS) measured in and calculated for the driver of a multicusp ion source operating in hydrogen are compared. The results show that atomic physics based theoretical models can accurately predict the EEDF in such discharges if some appropriate experimentally determined quantities are used as input parameters. The magnitude and shape of the EEDF is found to be particularly sensitive to the effective surface area to volume ratio for electrons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L- 1 (0.018 mg TRP L- 1) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km- 2 to 4.6 km- 2 and 13.8 km- 2 to 17.2 km- 2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal systems, such as rocky shores, are among the most heavily anthropogenically-impacted marine ecosystems and are also among the most productive in terms of ecosystem functioning. One of the greatest impacts on coastal ecosystems is nutrient enrichment from human activities such as agricultural run-off and discharge of sewage. The aim of this study was to identify and characterise potential effects of sewage discharges on the biotic diversity of rocky shores and to test current tools for assessing the ecological status of rocky shores in line with the EU Water Framework Directive (WFD). A sampling strategy was designed to test for effects of sewage outfalls on rocky shore assemblages on the east coast of Ireland and to identify the scale of the putative impact. In addition, a separate sampling programme based on the Reduced algal Species List (RSL), the current WFD monitoring tool for rocky shores in Ireland and the UK, was also completed by identifying algae and measuring percent cover in replicate samples on rocky shores during Summer. There was no detectable effect of sewage outfalls on benthic taxon diversity or assemblage structure. However, spatial variability of assemblages was greater at sites proximal or adjacent to sewage outfalls compared to shores without sewage outfalls present. Results based on the RSL, show that algal assemblages were not affected by the presence of sewage outfalls, except when classed into functional groups when variability was greater at the sites with sewage outfalls. A key finding of both surveys, was the prevalence of spatial and temporal variation of assemblages. It is recommended that future metrics of ecological status are based on quantified sampling designs, incorporate changes in variability of assemblages (indicative of community stability), consider shifts in assemblage structure and include both benthic fauna and flora to assess the status of rocky shores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cone-capillary nozzles with varying cone angles from 10° to 120° and a capillary diameter of 120μ are experimentally investigated for their application in the hydroentanglement process. Cone-up and cone-down configurations in a range of water pressures of 30-120 bar are tested. The effects of the cone angle on flow parameters such as discharge and velocity coefficients and intact length are studied. Flow visualization techniques are used to recognize the flow regimes and characteristics and to inspect and compare the intact length and appearance of the jets. Cone-down nozzles with more consistent flow properties, lower discharges, and higher velocity coefficients are more suitable for the hydroentanglement process. Single-cone nozzles without capillaries and with varying cone angles are also tested. The flow properties of the jets from the single-cone nozzles are compared with the cone-capillary nozzles of the same cone angle to study the effect of the capillary section. The effect of the interaction of adjacent nozzles on the flow from multi-hole nozzles is studied, and the characteristics of the jets from the multi-hole nozzles are compared with the single-hole nozzles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER.

Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of I-P = 3.0 MA/B-T = 2.9 T H-mode pulses with an input power of P-IN = 23 MW, a stored energy of similar to 6 MJ and regular type I ELMs at Delta W-ELM = 0.3 MJ and f(ELM) similar to 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within similar to 1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (delta W similar to 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64).

Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (similar to 80 mu m) were released. Almost 1 mm (similar to 6 mm(3)) of W was moved by similar to 150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j x B forces. The evaporation rate determined from spectroscopy is 100 times less than expected from steady state melting and is thus consistent only with transient melting during the individual ELMs. Analysis of IR data and spectroscopy together with modelling using the MEMOS code Bazylev et al 2009 J. Nucl. Mater. 390-391 810-13 point to transient melting as the main process. 3D MEMOS simulations on the consequences of multiple ELMs on damage of tungsten castellated armour have been performed.

These experiments provide the first experimental evidence for the absence of significant melt splashing at transient events resembling mitigated ELMs on ITER and establish a key experimental benchmark for the MEMOS code.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of nonlinear frequency coupling in an oxygen plasma excited by two odd harmonics at moderate pressure is investigated using a numerical model. Through variations in the voltage ratio and phase shift between the frequency components changes in ionization dynamics and sheath voltages are demonstrated. Furthermore, a regime in which the voltage drop across the plasma sheath is minimised is identified. This regime provides a significantly higher ion flux than a single frequency discharge driven by the lower of the two frequencies alone. These operating parameters have potential to be exploited for plasma processes requiring low ion bombardment energies but high ion fluxes. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kenyan tannery and associated environmental samples were selected for ecotoxicological assessment. A tool-kit of techniques was developed, including whole-cell biosensor and chemical assays. A luminescence based bacterial biosensor (Escherichia coli HB101 pUCD607) (via a multi-copy plasmid) was used for toxicity assessment. Samples were manipulated prior to biosensor interrogation to identify the nature of the toxic contaminants. Untreated samples (before any manipulations) showed a strong toxic effect at the discharge point in comparison to other sampling points. Sparging was used to identify toxicity associated with volatile organics. The toxicity of contaminants, removed by treatment with activated charcoal was identified for all the sampling points except for those upstream of effluent discharges. Filtration identified toxicity associated with suspended solids. Changes in availability of toxic contaminants due to pH adjustment of most samples from the tannery effluent treatment pits were also associated with the extreme pH values (4.0 and 8.0). The approach used has highlighted the complexicity of toxic pollutants in effluent from the tanning industry and the dissection of toxicity points to possible remediation strategies for effluents from the tanning industry.