97 resultados para Dielectric Surface Energy
Resumo:
We introduce a novel method to simulate hydrated macromolecules with a dielectric continuum representation of the surrounding solvent. In our approach, the interaction between the solvent and the molecular degrees of freedom is described by means of a polarization density free energy functional which is minimum at electrostatic equilibrium. After a pseudospectral expansion of the polarization and a discretization of the functional, we construct the equations of motion for the system based on a Car-Parrinello technique. In the limit of the adiabatic evolution of the polarization field variables, our method provides the solution of the dielectric continuum problem "on the fly," while the molecular coordinates are propagated. In this first study, we show how our dielectric continuum molecular dynamics method can be successfully applied to hydrated biomolecules, with low cost compared to free energy simulations with explicit solvent. To our knowledge, this is the first time that stable and conservative molecular dynamic simulations of solutes can be performed for a dielectric continuum model of the solvent. (C) 2001 American Institute of Physics.
Resumo:
The propagation of surface plasmon polaritons (SPP's) is studied using a photon scanning tunneling microscope (PSTM) and conventional attenuated total reflection (ATR). The PSTM experiment uses localized (focused beam) launching or SPP's at a wavelength of 632.8 nm. Propagation of the SPP is observed as an exponentially decaying tail beyond the launch site acid the 1/e propagation length is measured directly for a series of Ag films of different thicknesses. The ATR measurements are used to characterize the thin film optical and thickness parameters, revealing, notably, the presence of a contaminating adlayer of Ag2S of typical dielectric function, 8.7 + i2.7, and thickness 1-2 nm. Values of the SPP propagation length, based on the ATR- derived film parameters used in the four-media implicit SPP dispersion relation, show very good agreement with those based on the PSTM images for the case of undercoupled or optimally coupled SPP modes. The observed propagation lengths are quantitatively analyzed taking explicit account of additional intrinsic damping due to the growth of the Ag2S layer and of reradiation of the SPP back into the prism outside the launch site. Finally, the PSTM images show excellent SPP beam confinement in the original propagation direction.
Resumo:
Nonlinear optical transmission through periodically nanostructured metal films (surface-plasmon polaritonic crystals) has been studied. The surface polaritonic crystals have been coated with a nonlinear polymer. The optical transmission of such nanostructures has been shown to depend on the control-light illumination conditions. The resonant transmission exhibits bistable behavior with the control-light intensity. The bistability is different at different resonant signal wavelengths and for different wavelengths of the control light. The effect is explained by the strong sensitivity of the surface-plasmon mode resonances at the signal wavelength to the surrounding dielectric environment and the electromagnetic field enhancement due to plasmonic excitations at the controlled light wavelengths.
Resumo:
An analytical treatment of optical transmission through periodically nanosructured metal films capable of supporting surface-plasmon polaritons is presented. The optical properties of such metal films are governed by surface polariton behavior in a periodic surface structure forming a surface polaritonic crystal. Due to different configurations of the electromagnetic field of surface polariton modes, only states of even Brillouin zones are responsible for the optical transmission enhancement at normal incidence. The transmission enhancement is related to photon tunneling via resonant states of surface polariton Bloch modes in which the energy buildup takes place. Surface polariton states of at least one of the film interfaces contribute to the transmission resonance which occurs due to tunnel coupling between photons and surface polaritons on the opposite interfaces. Under double-resonance conditions, resonant tunneling between surface polariton states of both interfaces is achieved, which leads to further enhancement of the transmission efficiency. The double-resonance conditions occur not only in the case of a film in symmetric environment but can also be engineered for a film on a substrate. Light tunneling via surface polariton states can take place directly through a structured metal film and does not necessarily require holes in a film.
Resumo:
In this review we consider those processes in condensed matter that involve the irreversible flow of energy between electrons and nuclei that follows from a system being taken out of equilibrium. We survey some of the more important experimental phenomena associated with these processes, followed by a number of theoretical techniques for studying them. The techniques considered are those that can be applied to systems containing many nonequivalent atoms. They include both perturbative approaches (Fermi's Golden Rule and non-equilibrium Green's functions) and molecular dynamics based (the Ehrenfest approximation, surface hopping, semi-classical Gaussian wavefunction methods and correlated electron-ion dynamics). These methods are described and characterized, with indications of their relative merits.
Resumo:
Extensive contour scaling of a 200 year old granite church is associated with the breaching of an apparently iron-rich crust and the widespread deposition of atmospheric dust within the canyon-like streetscape of Rio de Janeiro. Contemporary dust, accumulated dust from within the a depression on the building surface, the surface crust and the underlying granite are examined by a combination of total element analysis and sequential extraction, X-ray diffraction and energy dispersive X-ray fluorescence. Results indicate an increase in total organic carbon and a marked decrease in pH within the accumulated dust, and a rapid mobilization of anions and cations from the water-soluble and carbonate phases. It is considered that the latter is linked to salt accumulation within and eventual salt weathering of the granite. Post-depositional alteration of the dust is also linked with the de-silicification of clay minerals (Illite to kaolinite) and the loss of silica from the amorphous Fe/Mn phase of the accumulated dust under the initially saline and progressively more acidic conditions experienced at the stone - atmosphere interface. This mobilization of silica is associated with the formation of what is, in effect, a thin silica-rich surface crust or glaze. Within the glaze, assessory amounts of extractable iron are concentrated within the amorphous and crystalline Fe/Mn phases at levels that are significantly elevated with respect to the underlying granite, but much lower than the equivalent phases of the accumulated dust from which it is principally assumed to derive. The protection afforded to the stone work by the crust is not, however, permanent and within the last 15 years it has been possible to observe a rapid increase in the surface delamination of the church close to street level.
Resumo:
A new far-field optical microscopy capable of reaching nanometer-scale resolution is developed using the in-plane image magnification by surface plasmon polaritons. This approach is based on the optical properties of a metal-dielectric interface that may provide extremely large values of the effective refractive index neff up to 103 as seen by surface polaritons, and thus the diffraction limited resolution can reach nanometer-scale values of lambda/2neff. The experimental realization of the microscope has demonstrated the optical resolution better than 60 nm at 515 nm illumination wavelength.
Resumo:
A frequency selective surface (FSS) which exploits the dielectric anisotropy of liquid crystals to generate an electronically tunable bandpass filter response at D Band (110-170 GHz) is presented. The device consists of two printed arrays of slot elements which are separated by a 130-mu m thick layer of liquid crystals. A 3% shift in the filter passband occurs when the substrate permittivity is increased by applying a control signal of 10 V. Measured results show that the insertion loss increases from -3.7 dB to -10.4 dB at resonance (134 GHz), thus demonstrating the potential to create a FSS which can be switched between a transmitting and a reflecting structure.
Resumo:
The dissociative adsorption of N-2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.
Resumo:
Voltammetry is reported for chlorine, Cl-2, dissolved in various room temperature ionic liquids using platinum microdisk electrodes. A single reductive voltammetric wave is seen and attributed to the two-electron reduction of chlorine to chloride. Studies of the effect of voltage scan rate reveal uniquely unusual behavior in which the magnitude of the currents decrease with increasing scan rates. A model for this is proposed and shown to indicate the presence of strongly adsorbed species in the electrode reaction mechanism, most likely chlorine atoms, Cl*((ads)).
Resumo:
Both experimental and theoretical information regarding the scattering and phase conjugate mixing properties of a 2D double-periodic array of wires loaded with nonlinear/linear lumped elements have been provided. An experimental means for assessing the phase conjugate energy production capability for the array is given. These investigations enable identification of the fundamental operational characteristics and underlying mechanisms associated with the production of phase conjugate energy by this type of artificial electromagnetic media. Means for enhancing the phase conjugate energy production capability of the structure by using additional linear lumped loads is examined theoretically and limits on the production of phase conjugate energy established. Theoretical far-field prediction of the behaviour of the structure indicates that retro-directive reflector action as well as negative refraction should be possible.
Resumo:
The complete spectrum of eigenwaves including surface plasmon polaritons (SPP), dynamic (bulk) and complex waves in the layered structures containing semiconductor and metallic films has been explored. The effects of loss, geometry and the parameters of dielectric layers on the eigenmode spectrum and, particularly, on the SPP modes have been analysed using both the asymptotic and rigorous numerical solutions of the full-wave dispersion equation. The field and Poynting vector distributions have been examined to identify the modes and elucidate their properties. It has been shown that losses and dispersion of permittivity qualitatively alter the spectral content and the eigenwave properties. The SPP counter-directional power fluxes in the film and surrounding dielectrics have been attributed to vortices of power flow, which are responsible for the distinctive features of SPP modes. It has been demonstrated for the first time that the maximal attainable slow-wave factor of the SPP modes guided by thin Au films at optical frequencies is capped not by losses but the frequency dispersion of the actual Au permittivity. © 2009 EDP Sciences.
Resumo:
We simulate the localized surface plasmon resonances of an Au nanoparticle within tunnelling proximity of an Au substrate. The results demonstrate that the calculated resonance energies can be identified with those experimentally detected for light emission from the tip-sample junction of a scanning tunnelling microscope. Relative to the modes of an isolated nanoparticle these modes show significant red-shifting, extending further into the infrared with increasing radius, primarily due to a proximity-induced lowering of the effective bulk plasmon frequency. Spatial mapping of the field enhancement factor shows an oscillatory variation of the field, absent in the case of a dielectric substrate; also the degree of localization of the modes, and thus the resolution achievable electromagnetically, is shown to depend primarily on the nanoparticle radius, which is only weakly dependent on wavelength.
Resumo:
Results are reported on the a-b plane dielectric function (epsilon) of thin-film c-axis NdBa2Cu3O7-delta with close to optimal oxygen doping (T-c similar to 90 K) in the mid-infrared (wavelength 3.392 mum) over the temperature range 85 K to 300 K. An attenuated total reflectance technique based on the excitation of surface plasmon polaritons is used. The results show that \epsilon (r)\ decreases quasi-linearly with increasing temperature, while Ei is invariant with temperature to within experimental uncertainties. Representative values are epsilon = [epsilon (r) + i epsilon (i)] = (-12.9 +/- 0.6) + i(23.0 +/- 1.5) at T similar to 295 K and epsilon = (-15.7 +/- 0.7) + i(23.5 +/- 1.1) at T similar to 90 K. The raw data an interpreted in terms of the generalized Drude model which gives effective scattering rates (1/tau*) that increase with temperature from about 3800 cm(-1) at 90 K to about 4300 cm(-1) at 295 K. There are indications of a superlinear T-dependence in the scattering, 1/tau*: a fit to a function of the form 1/tau* = A + BTalpha gives alpha = 2.8 +/- 0.7. The effective plasma frequency, omega (p)*, with an average value of approximately 21 000 cm(-1) was independent of temperature.