119 resultados para Delivery of goods--Egypt--Oxyrhynchite Nome.
Resumo:
Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] : Cholesterol (DOPS : Chol) liposomes for inhalation. Incubation of rSLPI with cathepsin L leads to complete loss of activity while encapsulation of rSLPI in DOPS : Chol liposomes retained 92.6 of its activity after challenge with cathepsin L. rSLPI-loaded liposomes were aerosolized efficiently using a standard nebulizer with a minimal loss of activity and stability. This formulation was biocompatible and encapsulation did not appear to diminish access to intracellular sites of action in in vitro cell culture studies. Liposome encapsulation of rSLPI therefore improves stability and potentially reduces the level and frequency of dosing required for therapeutic effect after inhalation.
Resumo:
Perhaps the greatest barrier to development of the field of transmembrane drug delivery is that only a limited number of drugs are amenable to administration by this route. The highly lipophilic nature and barrier function of the uppermost layer of the skin, the stratum corneum, for example, restricts the permeation of hydrophilic, high molecular weight and charged compounds into the systemic circulation. Other membranes in the human body can also present significant barriers to drug permeation. In order to successfully deliver hydrophilic drugs, and macromolecular agents of interest, including peptides, DNA and small interfering RNA, many research groups and pharmaceutical companies Worldwide are focusing on the use of microporation methods and devices. Whilst there are a variety of microporation techniques, including the use of laser, thermal ablation, electroporation, radiofrequency, ultrasound, high pressure jets, and microneedle technology, they share the common goal of enhancing the permeability of a biological membrane through the creation of transient aqueous transport pathways of micron dimensions across that membrane. Once created, these micropores are orders of magnitude larger than molecular dimensions and, therefore, should readily permit the transport of hydrophilic macromolecules. Additionally, microporation devices also enable minimally-invasive sampling and monitoring of biological fluids. This review deals with the innovations relating to microporation-based methods and devices for drug delivery and minimally invasive monitoring, as disclosed in recent patent literature. © 2010 Bentham Science Publishers Ltd.
Resumo:
Poly(vinyl alcohol)-borate complexes were evaluated as a potentially novel drug delivery platform suitable for in vivo use in photodynamic antimicrobial chemotherapy (PACT) of wound infections. An optimised formulation (8.0%w/w PVA, 2.0% w/w borax) was loaded with 1.0 mg ml(-1) of the photosensitisers Methylene Blue (MB) and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP). Both drugs were released to yield receiver compartment concentrations (>5.0 mu g ml(-1)) found to be phototoxic to both planktonic and bicifilm-grown methicillin-resistant Staphylococcus aureus (MRSA), a common cause of wound infections in hospitals. Newborn calf serum, used to simulate the conditions prevalent in an exuding wound, did not adversely affect the properties of the hydrogels and had no significant effect on the rate of TMP-mediated photodynamic kill of MRSA, despite appreciably reducing the fluence rate of incident light. However, MB-mediated photodynamic kill of MRSA was significantly reduced in the presence of calf serum and when the clinical isolate was grown in a biofilm. Results support the contention that delivery of MB or TMP using gel-type vehicles as part of PACT could make a contribution to the photodynamic eradication of MRSA from infected wounds. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To assess the applicability of photodynamic therapy (PDT) in the management of vulvodynia whereby a novel, patch-type system, loaded with 5-aminolevulinic acid (ALA), was used to administer PDT to vulvar regions displaying the characteristics of vulvodynia.
Resumo:
Objectives The inclusion 01 chemical penetration enhancers in a novel patch-based system for the delivery of 5-aminolevulinic acid (ALA) was examined in vitro and in vivo. Poor penetration of ALA has been implicated as the primary factor for low response rates achieved with topical ALA-based photodynamic therapy of thicker neoplastic lesions. such as nodular basal cell carcinomas.
Resumo:
Dapivirine mucoadhesive gels and freeze-dried tablets were prepared using a 3 x 3 x 2 factorial design. An artificial neural network (ANN) with multi-layer perception was used to investigate the effect of hydroxypropyl-methylcellulose (HPMC): polyvinylpyrrolidone (PVP) ratio (XI), mucoadhesive concentration (X2) and delivery system (gel or freeze-dried mucoadhesive tablet, X3) on response variables; cumulative release of dapivirine at 24 h (Q(24)), mucoadhesive force (F-max) and zero-rate viscosity. Optimisation was performed by minimising the error between the experimental and predicted values of responses by ANN. The method was validated using check point analysis by preparing six formulations of gels and their corresponding freeze-dried tablets randomly selected from within the design space of contour plots. Experimental and predicted values of response variables were not significantly different (p > 0.05, two-sided paired t-test). For gels, Q(24) values were higher than their corresponding freeze-dried tablets. F-max values for freeze-dried tablets were significantly different (2-4 times greater, p > 0.05, two-sided paired t-test) compared to equivalent gets. Freeze-dried tablets having lower values for X1 and higher values for X2 components offered the best compromise between effective dapivirine release, mucoadhesion and viscosity such that increased vaginal residence time was likely to be achieved. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objectives The Tat peptide has been widely used for the intracellular delivery of macromolecules. The aim of this study was to modify the peptide to enable regulation of cellular uptake through a dependency on activation by proteases present in the local environment.
Methods The native Tat peptide sequence was altered to inhibit the initial interaction of the peptide with the cell membrane through the addition of the consensus sequence for urokinase plasminogen activator (uPA). uPA expression was characterised and semi-quantitatively rated in three cell lines (U251mg, MDA-MB-231 and HeLa). The modified peptide was incubated with both recombinant enzyme and with cells varying in uPA activity. Cellular uptake of the modified Tat peptide line was compared with that of the native peptide and rated according to uPA activity measured in each cell line.
Key findings uPA activity was observed to be high in U251mg and MDA-MB-231 and low in HeLa. In MDA-MB-231 and HeLa, uptake of the modified peptide correlated with the level of uPA expression detected (93 and 52%, respectively). In U251mg, however, the uptake of the modified peptide was much less (19% observed reduction) than the native peptide despite a high level of uPA activity detected.
Conclusions Proteolytic activation represents an interesting strategy for the targeted delivery of macromolecules using peptide-based carriers and holds significant potential for further exploitation.
Resumo:
A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.
Resumo:
Films containing 20% w/w chlorhexidine base (particle size 63-125 mu m) in poly(epsilon-caprolactone), MW 35 000-45 000, were prepared by solvent evaporation and sections attached to the mesio-lingual and mesio-buccal surfaces of the lower first molar in healthy volunteers. Saliva (