49 resultados para Decoupling controls


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical,spectrographic, microbiological and hydrogeologic studies at the ORIFRC site indicate that groundwater transport in structured media may behave as a system of parallel flow tubes. These tubes are preferred flowpaths that enable contaminant transport parallel to bedding planes (strike) over distances of 1000s of meters. A significant flux of groundwater is focused within an interval defined by the interface between the competent bedrock and overlying highly-weathered saprolite, commonly referred to as the"transition zone." Characteristics of this transition zone are dense fractures and the relative absence of weathering products (e.g. clays)results in a significantly higher permeability compared to both the overlying clay-saprolite and underlying bedrock. Several stratabound low seismic velocity zones located below the transition zone were identified during geophysics studies and were also determined to be fractured high permeability preferred contaminant transport pathways during subsequent drilling activities. XANES analysis of precipitates collected from these deeper flow zones indicate 95% or more of the U deposited is U(VI). Linear combination fitting of the EXAFS data shows that precipitates are ~51±5% U(VI)-carbonate-like phase (e.g., liebigite) and ~49±5% U(VI) associated with an iron oxide phase; inclusion of a third component in the fit suggests that up to 15% of the U(VI) may be associated with a phosphate phase or OH- phase (e.g.,schoepite). Although precipitates with similar U(VI)-carbonate and/or phosphate associations were identified in the transition zone pathways,there were also U(VI) complexes adsorbed to mineral surfaces that would tend to be more readily mobilized. Groundwater in the different flow tubes has been determined to consist of different water quality types that vary with the solid phase encountered (e.g., clays, carbonates, clastics) as contaminants migrate along the flow paths. This lateral and vertical variability in geochemistry, particularly pH, has a significant impact on microbiological community composition and activity. Ribosomal RNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter(a diverse population of denitrifiers that are moderately acid tolerant) have a high relative abundance in the acidic source zone at the ORIFRC site.Watershed-scale analysis across different flow paths/tubes revealed strong negative correlation between pH and the absolute and relative abundance of Rhodanobacter. Recent studies also confirmed that the ORIFRC site hosts a diverse fungal community, with significant differences observed between acidic (pH <5) and circumneutral (>5) wells. The lack of nitrous oxide reduction capability in fungi, and the detection of denitrification potential in slurry microcosms suggest that fungi may have aheretofore under appreciated role in biogeochemical transformations, with implications forsite remediation and greenhouse gas emissions. Further research is needed to determine if these organisms can influence U(VI) mobility either directly through immobilization or indirectly through the depletion of nitrate.In conclusion, additional studies are required to quantify the processes (e.g., solid phase reactions, recharge, diffusion, microbial interactions) that are occurring along the groundwater flow tubes identified at the ORIFRC so predictive models can be parameterized and used to assess long-term contaminant fate and transport and remedial options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumour microenvironment has an important role in cancer progression and recent reports have proposed that stromal AKT is activated and regulates tumourigenesis and invasion. We have shown, by immuno-fluorescent analysis of oro-pharyngeal cancer biopsies, an increase in AKT activity in tumour associated stromal fibroblasts compared to normal stromal fibroblasts. Using organotypic raft co-cultures, we show that activation of stromal AKT can induce the invasion of keratinocytes expressing the HPV type 16 E6 and E7 proteins, in a Keratinocyte Growth Factor (KGF) dependent manner. By depleting stromal fibroblasts of each of the three AKT isoforms independently, or through using isoform specific inhibitors, we determined that stromal AKT2 is an essential regulator of invasion and show in oro-pharyngeal cancers that AKT2 specific phosphorylation events are also identified in stromal fibroblasts. Depletion of stromal AKT2 inhibits epithelial invasion through activating a protective pathway counteracting KGF mediated invasions. AKT2 depletion in fibroblasts stimulates the cleavage and release of IL1B from stromal fibroblasts resulting in down-regulation of the KGF receptor (fibroblast growth factor receptor 2B (FGFR2B)) expression in the epithelium. We also show that high IL1B is associated with increased overall survival in a cohort of patients with oro-pharyngeal cancers. Our findings demonstrate the importance of stromal derived growth factors and cytokines in regulating the process of tumour cell invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data derived from a series of field and laboratory studies of the influence of albedo and thermal conductivity on stone temperatures are reported. They indicate the complexity of surface/subsurface temperature response characteristics of different stone types exposed to the same conditions and highlight the influence of albedo and thermal conductivity on micro-environmental conditions at the rock/air interface – conditions which have significant implications for the nature and rate of weathering activity and which may, over time, affect any surface treatments applied to stone surfaces. Although the studies reviewed were carried out within the subject area of geomorphology, the data reported and the implications for stone weathering arising from them, may be of some relevance to the conservation science perspective on deterioration of contemporary, historical and archaeological stonework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mfabeni peatland is the only known sub-tropical coastal fen that transcends the Last Glacial Maximum (LGM). This ca. 10m thick peat sequence provides a continuous sedimentation record spanning from the late Pleistocene to present (basal age c. 47kcalyr BP). We investigated the paleaeoenvironmental controls on peat formation and organic matter source input at the Mfabeni fen by: 1) exploring geochemical records (mass accumulation rate, total organic carbon, carbon accumulation rate, δC, δN and C/N ratio) to delineate primary production, organic matter source input, preservation and diagenetic processes, and 2) employ these geochemical signatures to reconstruct the palaeoenvironmental conditions and prevailing climate that drove carbon accumulation in the peatland. We established that the Mfabeni peat sediments have undergone minimal diagenetic alteration. The peat sequence was divided into 5 linear sedimentation rate (LSR) stages indicating distinct changes in climate and hydrological conditions: LSR stage 1 (c. 47 to c. 32.2kcalyr BP): predominantly cool and wet climate with C4 plant assemblages, interrupted by two short warming events. LSR stage 2 (c. 32.2 to c. 27.6kcalyr BP): dry and windy climate followed by a brief warm and wet period with increased C4 sedge swamp vegetation. LSR stage 3 (c. 27.6 to c. 20.3kcalyr BP): initial cool and wet period with prevailing C4 sedge plant assemblage until c. 23kcalyr BP; then an abrupt change to dry and cool glacial conditions and steady increases in C3 grasses. LSR stage 4 (c. 20.3 to c. 10.4kcalyr BP): continuation of cool and dry conditions and strong C3 grassland signature until c. 15kcalyr BP, after which precipitation increases. LSR stage 5 (c. 10.4kcalyr BP to present): characterised by extreme fluctuations between pervasive wet and warm to cool interglacial conditions with intermittent abrupt millennial-scale cooling/drying events and oscillations between C3 and C4 plant assemblages. In this study we reconstructed a high-resolution record of local hydrology, bulk plant assemblage and inferred climate since the Late Pleistocene, which suggest an anti-phase link between Southern African and the Northern Hemisphere, most notably during Heinrich (5 to 2) and Younger Dryas events. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To investigate the role of the prefrontal cortex in attention-based modulation of cortical somatosensory processing.

Methods: Six prefrontal stroke patients were compared with eleven neurologically intact older adults during a vibrotactile discrimination task. All subjects attended to stimuli on one digit while ignoring distracter stimuli on a separate digit of the same hand. Subjects were required to report infrequent targets on the attended digit only. Throughout testing electroencephalography was used to measure event-related potentials for both task-relevant and irrelevant stimuli.

Results: Prefrontal patients demonstrated significant changes in cortical somatosensory processing based on attention compared to age-matched controls. This was evident both in early unimodal somatosensory processing (i.e. P100) and in later cortical processing stages (i.e. long-latency positivity). Moreover, there was a tendency towards a tonic loss of inhibition over early somatosensory cortical processing (i.e. P50).

Conclusions: The attention-based modulation noted for neurologically intact older adults was absent in prefrontal lesion patients.

Significance: The present study highlights the important role of prefrontal regions in sustaining inhibition over early sensory cortical processing stages and in modifying somatosensory transmission based on task-relevance. Notably these deficits extend beyond those previously shown to occur as a function of age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice-marginal moraines are often used to reconstruct the dimensions of former ice masses, which are then used as proxies for palaeoclimate. This approach relies on the assumption that the distribution of moraines in the modern landscape is an accurate reflection of former ice margin positions during climatically controlled periods of ice margin stability. However, the validity of this assumption is open to question, as a number of additional, nonclimatic factors are known to influence moraine distribution. This review considers the role played by topography in this process, with specific focus on moraine formation, preservation, and ease of identification (topoclimatic controls are not considered). Published literature indicates that the importance of topography in regulating moraine distribution varies spatially, temporally, and as a function of the ice mass type responsible for moraine deposition. In particular, in the case of ice sheets and ice caps ( > 1000 km2), one potentially important topographic control on where in a landscape moraines are deposited is erosional feedback, whereby subglacial erosion causes ice masses to become less extensive over successive glacial cycles. For the marine-terminating outlets of such ice masses, fjord geometry also exerts a strong control on where moraines are deposited, promoting their deposition in proximity to valley narrowings, bends, bifurcations, where basins are shallow, and/or in the vicinity of topographic bumps. Moraines formed at the margins of ice sheets and ice caps are likely to be large and readily identifiable in the modern landscape. In the case of icefields and valley glaciers (10–1000 km2), erosional feedback may well play some role in regulating where moraines are deposited, but other factors, including variations in accumulation area topography and the propensity for moraines to form at topographic pinning points, are also likely to be important. This is particularly relevant where land-terminating glaciers extend into piedmont zones (unconfined plains, adjacent to mountain ranges) where large and readily identifiable moraines can be deposited. In the case of cirque glaciers (< 10 km2), erosional feedback is less important, but factors such as topographic controls on the accumulation of redistributed snow and ice and the availability of surface debris, regulate glacier dimensions and thereby determine where moraines are deposited. In such cases, moraines are likely to be small and particularly susceptible to post-depositional modification, sometimes making them difficult to identify in the modern landscape. Based on this review, we suggest that, despite often being difficult to identify, quantify, and mitigate, topographic controls on moraine distribution should be explicitly considered when reconstructing the dimensions of palaeoglaciers and that moraines should be judiciously chosen before being used as indirect proxies for palaeoclimate (i.e., palaeoclimatic inferences should only be drawn from moraines when topographic controls on moraine distribution are considered insignificant).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A huge variety of proteins are able to form fibrillar structures(1), especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand(2,3). Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal(4,5) and carboxy-terminal(6) domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation(7) initiated by changes in ionic composition(8,9) and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation(10-14). However, despite recent structural data(15), little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the European Union Renewable Energy Directive each Member State is mandated to ensure that 10% of transport energy (excluding aviation and marine transport) comes from renewable sources by 2020. The Irish Government intends to achieve this target with a number of policies including ensuring that 10% of all vehicles in the transport fleet are powered by electricity by 2020. This paper investigates the impact of the 10% electric vehicle target in Ireland in 2020 using a dynamic programming based long term generation expansion planning model. The model developed optimizes power dispatch using hourly electricity demand curves up to 2020, while incorporating generator characteristics and certain operational requirements such as energy not served and loss of load probability while satisfying constraints on environmental emissions, fuel availability and generator operational and maintenance costs. Two distinct scenarios are analysed based on a peak and off-peak charging regimes in order to simulate the effects of the electric vehicles charging in 2020. The importance and influence of the charging regimes on the amount of energy used and tailgate emissions displaced is then determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myeloproliferative neoplasms (MPN) including polycythaemia vera (PV), essential thrombocythaemia and primary myelofibrosis (PMF) are rare diseases contributing to significant morbidity. Symptom management is a prime treatment objective but current symptom assessment tools have not been validated compared to the general population. The MPN-symptom assessment form (MPN-SAF), a reliable and validated clinical tool to assess MPN symptom burden, was administered to MPN patients (n = 106) and, for the first time, population controls (n = 124) as part of a UK case–control study. Mean symptom scores were compared between patients and controls adjusting for potential confounders. Mean patient scores were compared to data collected by the Mayo Clinic, USA on 1,446 international MPN patients to determine patient group representativeness. MPN patients had significantly higher mean scores than controls for 25 of the 26 symptoms measured (P < 0.05); fatigue was the most common symptom (92.4% and 78.1%, respectively). Female MPN patients suffered worse symptom burden than male patients (P < 0.001) and substantially worse burden than female controls (P < 0.001). Compared to the Mayo clinic patients, MPN-UK patients reported similar symptom burden but lower satiety (P = 0.046). Patients with PMF reported the worst symptom burden (88.3%); significantly higher than PV patients (P < 0.001). For the first time we report quality of life was worse in MPN-UK patients compared with controls (P < 0.001).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glacial cirques reflect former regions of glacier initiation, and are therefore used as indicators of past climate. One specific way in which palaeoclimatic information is obtained from cirques is by analysing their elevations, on the assumption that cirque floor altitudes are a proxy for climatically controlled equilibrium-line altitudes (ELAs) during former periods of small scale (cirque-type) glaciation. However, specific controls on cirque altitudes are rarely assessed, and the validity of using cirque floor altitudes as a source of palaeoclimatic information remains open to question. In order to address this, here we analyse the distribution of 3520 ice-free cirques on the Kamchatka Peninsula (eastern Russia), and assess various controls on their floor altitudes. In addition, we analyse controls on the mid-altitudes of 503 modern glaciers, currently identifiable on the peninsula, and make comparisons with the cirque altitude data. The main study findings are that cirque floor altitudes increase steeply inland from the Pacific, suggesting that moisture availability (i.e., proximity to the coastline) played a key role in regulating the altitudes at which former (cirque-forming) glaciers were able to initiate. Other factors, such as latitude, aspect, topography, geology and neo-tectonics seem to have played a limited (but not insignificant) role in regulating cirque floor altitudes, though south-facing cirques are typically higher than their north-facing equivalents, potentially reflecting the impact of prevailing wind directions (from the SSE) and/or variations in solar radiation on the altitudes at which former glaciers were able to initiate. Trends in glacier and cirque altitudes across the peninsula are typically comparable (i.e., values typically rise from both the north and south, inland from the Pacific coastline, and where glaciers/cirques are south-facing), yet the relationship with latitude is stronger for modern glaciers, and the relationship with distance to the coastline (and to a lesser degree with aspect) is notably weaker. These differences suggest that former glacier initiation (leading to cirque formation) was largely regulated by moisture availability (during winter months) and the control this exerted on accumulation; whilst the survival of modern glaciers is also strongly regulated by the variety of climatic and non climatic factors that control ablation. As a result, relationships between modern glacier mid-altitudes and peninsula-wide climatic trends are more difficult to identify than when cirque floor altitudes are considered (i.e., cirque-forming glaciers were likely in climatic equilibrium, whereas modern glaciers may not be).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells experience damage from exogenous and endogenous sources that endanger genome stability. Several cellular pathways have evolved to detect DNA damage and mediate its repair. Although many proteins have been implicated in these processes, only recent studies have revealed how they operate in the context of high-ordered chromatin structure. Here, we identify the nuclear oncogene SET (I2PP2A) as a modulator of DNA damage response (DDR) and repair in chromatin surrounding double-strand breaks (DSBs). We demonstrate that depletion of SET increases DDR and survival in the presence of radiomimetic drugs, while overexpression of SET impairs DDR and homologous recombination (HR)-mediated DNA repair. SET interacts with the Kruppel-associated box (KRAB)-associated co-repressor KAP1, and its overexpression results in the sustained retention of KAP1 and Heterochromatin protein 1 (HP1) on chromatin. Our results are consistent with a model in which SET-mediated chromatin compaction triggers an inhibition of DNA end resection and HR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most models of riverine eco-hydrology and biogeochemistry rely upon bulk parameterization of fluxes. However, the transport and retention of carbon and nutrients in headwater streams is strongly influenced by biofilms (surface-attached microbial communities), which results in strong feedbacks between stream hydrodynamics and biogeochemistry. Mechanistic understanding of the interactions between streambed biofilms and nutrient dynamics is lacking. Here we present experimental results linking microscale observations of biofilm community structure to the deposition and resuspension of clay-sized mineral particles in streams. Biofilms were grown in identical 3 m recirculating flumes over periods of 14-50 days. Fluorescent particles were introduced to each flume, and their deposition was traced over 30 minutes. Particle resuspension from the biofilms was then observed under an increased stream flow, mimicking a flood event. We quantified particle fluxes using flow cytometry and epifluorescence microscopy. We directly observed particle adhesion to the biofilm using a confocal laser scanning microscope. 3-D Optical Coherence Tomography was used to determine biofilm roughness, areal coverage and void space in each flume. These measurements allow us to link biofilm complexity to particle retention during both baseflow and floodflow. The results suggest that increased biofilm complexity favors deposition and retention of fine particles in streams.