50 resultados para Coloring matter in food
Resumo:
Issues surrounding the misuse of prohibited and licensed substances in animals destined for food production and performance sport competition continue to be an enormous challenge to regulatory authorities charged with enforcing their control. Efficient analytical strategies are implemented to screen and confirm the presence of a wide range of exogenous substances in various biological matrices. However, such methods rely on the direct measurement of drugs and/or their metabolites in a targeted mode, allowing the detection of restricted number of compounds. As a consequence, emerging practices, in particular the use of natural hormones, designer drugs and low-dose cocktails, remain difficult to handle from a control point of view. A new SME-led FP7 funded project, DeTECH21, aims to overcome current limitations by applying an untargeted metabolomics approach based on liquid chromatography coupled to high resolution mass spectrometry and bioinformatic data analysis to identify bovine and equine animals which have been exposed to exogenous substances and assist in the identification of administered compounds. Markerbased strategies, dealing with the comprehensive analysis of metabolites present in a biological sample (urine/plasma/tissue), offer a reliable solution in the areas of food safety and animal sport doping control by effective, high-throughput and sensitive detection of exogenously administered agents. Therefore, the development of the first commercially available forensic test service based on metabolomics profiling will meet 21st century demands in animal forensics.
Resumo:
Hands can be a vector for transmitting pathogenic microorganisms to foodstuffs and drinks, and to the mouths of susceptible hosts. Hand washing is the primary barrier to prevent transmission of enteric pathogens via cross contamination from infected persons. Conventional hand washing involves the use of warm water, soap and friction to remove dirt and microorganisms. Over recent years there has been an increasing availability of hand sanitizing products for use when water and soap are unavailable. The aim of this systematic review was to collate scientific information on the efficacy of hand sanitizers compared to hand washing with soap and water for the removal of foodborne pathogens from the hands of food handlers. An extensive literature search was carried out using three electronic databases - Web of Science, Scopus and PubMed. Twenty-eight scientific publications were ultimately included in the review. Analysis of the literature showed various limitations in the scientific information due to the absence of a standardized protocol to evaluate efficacy of hand products, and variation in experimental conditions applied in different studies. Despite the existence of conflicting results, scientific evidence seems to support the historical scepticism about the use of water-less hand sanitizers in food preparation settings. Water and soap appear to achieve greater removal of soil and microorganisms than water-less products from hands. None of the hand sanitizers tested in the literature seemed to achieve complete inactivation or removal of all foodborne pathogens tested, and the presence of food debris significantly affected inactivation rates of hand products.
Resumo:
Ectomycorrhizal fungi and saprotrophic microorganisms coexist and interact in the mycorrhizosphere. We review what is known regarding these interactions and how they may influence processes such as ectomycorrhiza formation, mycelial growth, and the dynamics of carbon movement to and within the rhizosphere. Particular emphasis is placed on the potential importance of interactions in decomposition of soil organic matter and degradation of persistant organic pollutants in soil. While our knowledge is currently fairly limited, it seems likely that interactions have profound effects on mycorrhizosphere processes. More extensive research is warranted to provide novel insights into mycorrhizosphere ecology and to explore the potential for manipulating the ectomycorrhizosphere environment for biotechnological purposes.
Resumo:
Mycotoxins and heavy metals are ubiquitous in the environment and contaminate many foods. The widespread use of pesticides in crop production to control disease contributes further to the chemical contamination of foods. Thus multiple chemical contaminants threaten the safety of many food commodities; hence the present study used maize as a model crop to identify the severity in terms of human exposure when multiple contaminants are present. High Content Analysis (HCA) measuring multiple endpoints was used to determine cytotoxicity of complex mixtures of mycotoxins, heavy metals and pesticides. Endpoints included nuclear intensity (NI), nuclear area (NA), plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial mass (MM). At concentrations representing legal limits of each individual contaminant in maize (3. ng/ml ochratoxin A (OTA), 1. μg/ml fumonisin B1 (FB1), 2. ng/ml aflatoxin B1 (AFB1), 100. ng/ml cadmium (Cd), 150. ng/ml arsenic (As), 50. ng/ml chlorpyrifos (CP) and 5. μg/ml pirimiphos methyl (PM), the mixtures (tertiary mycotoxins plus Cd/As) and (tertiary mycotoxins plus Cd/As/CP/PM) were cytotoxic for NA and MM endpoints with a difference of up to 13.6% (. p≤. 0.0001) and 12% (. p≤. 0.0001) respectively from control values. The most cytotoxic mixture was (tertiary mycotoxins plus Cd/As/CP/PM) across all 4 endpoints (NA, NI, MM and MMP) with increases up to 61.3%, 23.0%, 61.4% and 36.3% (. p≤. 0.0001) respectively. Synergy was evident for two endpoints (NI and MM) at concentrations contaminating maize above legal limits, with differences between expected and measured values of (6.2-12.4% (. p≤. 0.05-. p≤. 0.001) and 4.5-12.3% (. p≤. 0.05-. p≤. 0.001) for NI and MM, respectively. The study introduces for the first time, a holistic approach to identify the impact in terms of toxicity to humans when multiple chemical contaminants are present in foodstuffs. Governmental regulatory bodies must begin to contemplate how to safeguard the population when such mixtures of contaminants are found in foods and this study starts to address this critical issue.
Resumo:
A suite of lipid biomarkers were investigated from surface sediments and particulate matter across hydrographically distinct zones associated with the western Irish Sea gyre and the seasonal bloom. The aim was to assess the variation of organic matter (OM) composition, production, distribution and fate associated with coastal and southern mixed regions and also the summer stratified region. Based on the distribution of a suite of diagnostic biomarkers, including phospholipid fatty acids, source-specific sterols, wax esters and C25 highly branched isoprenoids, diatoms, dinoflagellates and green algae were identified as major contributors of marine organic matter (MOM) in this setting. The distribution of cholesterol, wax esters and C20 and C22 polyunsaturated fatty acids indicate that copepod grazing represents an important process for mineralising this primary production. Net tow data from 2010 revealed much greater phytoplankton and zooplankton biomass in well-mixed waters compared to stratified waters. This appears to be largely reflected in MOM input to surface sediments. Terrestrial organic matter (TOM), derived from higher plants, was identified as a major source of OM regionally, but was concentrated in proximity to major riverine input at the Boyne Estuary and Dundalk Bay. Near-bottom residual circulation and the seasonal gyre also likely play a role in the fate of TOM in the western Irish Sea.
Resumo:
Enterobacter species commonly occur in the environment and are recognized as opportunistic human pathogens in clinical settings. However, with the exception of Enterobacter sakazakii (Cronobacter), Enterobacter species are not normally considered foodborne pathogens. Cronobacter are particularly associated with illness in infants, particularly within the first 3 months after birth. Therefore, although Cronobacter are found in a wide range of fresh and dried food materials, it is their contamination of the infant formula production chain that is the major cause for concern. Cronobacter are noted for their ability to survive during desiccation and their persistence in dried infant food for at least 2 years.
Resumo:
When most people think of food safety they think of food poisoning and bacteria. They also, one hopes, generally follow the well-understood public advice on bacterial risks and store their food properly and cook it thoroughly. But what about chemical risks in food? Do many consumers ask the question “if drug residues are in my food, does cooking make it safe?” Or do they assume that following the good advice on bacterial risks also affords some protection against the health risks of chemical contaminants? In this short report we highlight some difficulties in assessing the stability of veterinary drug residues during cooking and summarise our cooking studies on anthelmintics, nitroimidazoles and nitrofuran residues in various foods. safefood Knowledge Networks http://safefood.ning.com/
Resumo:
Obestatin is a recently discovered peptide hormone that appears to be involved in reducing food intake, gut motility and body weight. Obestatin is a product of the preproghrelin gene and appears to oppose several physiological actions of ghrelin. This study investigated the acute effects of obestatin (1-23) and the truncated form, obestatin (11-23), on feeding activity, glucose homeostasis or insulin secretion. Mice received either intraperitoneal obestatin (1-23) or (11-23) (1 mu mol/kg) 4 h prior to an allowed 15 min period of feeding. Glucose excursions and insulin responses were lowered by 64-77% and 39-41%, respectively, compared with saline controls. However this was accompanied by 43% and 53% reductions in food intake, respectively. The effects of obestatin peptides were examined under either basal or glucose (18 mmol/kg) challenge conditions to establish whether effects were independent of changes in feeding. No alterations in plasma glucose or insulin responses were observed. In addition, obestatin peptides had no effect on insulin sensitivity as revealed by hypoglycaemic response when co-administered with insulin. Our observations support a role for obestatin in regulating metabolism through changes of appetite, but indicate no direct actions on glucose homeostasis or insulin secretion. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Obestatin (OB(1-23) is a 23 amino acid peptide encoded on the preproghrelin gene, originally reported to have metabolic actions related to food intake, gastric emptying and body weight. The biological instability of OB(1-23) has recently been highlighted by studies demonstrating its rapid enzymatic cleavage in a number of biological matrices. We assessed the stability of both OB(1-23) and an N-terminally PEGylated analogue (PEG-OB(1-23)) before conducting chronic in vivo studies. Peptides were incubated in rat liver homogenate and degradation monitored by LC-MS. PEG-OB(1-23) was approximately 3-times more stable than OB(1-23). Following a 14 day infusion of Sprague Dawley rats with 50 mol/kg/day of OB(1-23) or a N-terminally PEGylated analogue (PEG-OB(1-23)), we found no changes in food/fluid intake, body weight and plasma glucose or cholesterol between groups. Furthermore, morphometric liver, muscle and white adipose tissue (WAT) weights and tissue triglyceride concentrations remained unaltered between groups. However, with stabilised PEG-OB(1-23) we observed a 40% reduction in plasma triglycerides. These findings indicate that PEG-OB(1-23) is an OB(1-23) analogue with significantly enhanced stability and suggest that obestatin could play a role in modulating physiological lipid metabolism, although it does not appear to be involved in regulation of food/fluid intake, body weight or fat deposition.
Resumo:
Connectance webs represent the standard data description in food web ecology, but their usefulness is often limited in understanding the patterns and processes within ecosystems. Increasingly, efforts have been made to incorporate additional, biologically meaningful, data into food web descriptions, including the construction of food webs using data describing the body size and abundance of each species. Here, data from a terrestrial forest floor food web, sampled seasonally over a 1-year period, were analysed to investigate (i) how stable the body size abundance and predator prey relationships of an ecosystem are through time and (ii) whether there are system-specific differences in body size abundance and predator prey relationships between ecosystem types.
Manipulating Interaction Strengths and the Consequences for Trivariate Patterns in a Marine Food Web
Resumo:
We are experiencing a global extinction crisis as a result of climate change and human-induced alteration of natural habitats, with large predators at high trophic levels in food webs being particularly vulnerable. Unfortunately, there is a scarcity of food web data that can be used to assess how species extinctions alter the structure and stability of temporally and spatially replicated networks. We established a series of large experimental mesocosms in a shallow subtidal benthic marine system and constructed food webs for each replicate. After 6 months of community assembly, we removed large predators from the core communities of 20 experimental food webs, based on the strength of their trophic interactions, and monitored the changes in the networks' structure and stability over an 8-month period. Our analyses revealed the importance of allometric relationships and size-structuring in natural communities as a means of preserving food web structure and sustainability, despite significant changes in the diversity, stability and productivity of the system.