41 resultados para Cattle.
Resumo:
We have determined the mitochondrial genotype of liver fluke present in Bison (Bison bonasus) from the herd maintained in the Bialowieza National Park in order to determine the origin of the infection. Our results demonstrated that the infrapopulations present in the bison were genetically diverse and were likely to have been derived from the population present in local cattle. From a consideration of the genetic structure of the liver fluke infrapopulations we conclude that the provision of hay at feeding stations may be implicated in the transmission of this parasite to the bison. This information may be of relevance to the successful management of the herd. © 2012 Elsevier B.V.
Resumo:
The ProSafeBeef project studied the prevalence of residues of anthelmintic drugs used to control parasitic worms and fluke in beef cattle in Ireland. Injured (casualty) cattle may enter the human food chain under certain conditions, verified by an attending veterinarian and the livestock keeper. An analytical survey was conducted to determine if muscle from casualty cattle contained a higher prevalence of anthelmintic drug residues than healthy (full slaughter weight) cattle as a result of possible non-observance of complete drug withdrawal periods. A validated analytical method based on matrix solid-phase dispersive extraction (QuEChERS) and ultra-performance liquid chromatography-tandem mass spectrometry was used to quantify 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, 0.15-10.2 µg kg -1). Of 199 control samples of beef purchased in Irish shops, 7% contained detectable anthelmintic drug residues but all were compliant with European Union Maximum Residue Limits (MRL). Of 305 muscle samples from injured cattle submitted to abattoirs in Northern Ireland, 17% contained detectable residues and 2% were non-compliant (containing either residues at concentrations above the MRL or residues of a compound unlicensed for use in cattle). Closantel and ivermectin were the most common residues, but a wider range of drugs was detected in muscle of casualty cattle than in retail beef. These data suggest that specific targeting of casualty cattle for testing for anthelmintic residues may be warranted in a manner similar to the targeted testing for antimicrobial compounds often applied in European National Residues Surveillance Schemes. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Background: The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates. Methodology/Principal Findings: We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC- curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23±0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data. Conclusions/Significance: These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies. © 2014 Tsairidou et al.
Resumo:
Growth-promoting agents are continually misused for increasing animal growth and fraudulent gain in the meat industry, yet detection rates from conventional targeted testing for drug residues do not reflect this. This is because testing currently relies on direct detection of drugs or related metabolites and administrators of such compounds can take adaptive measures to avoid detection through the use of endogenous or unknown drugs, and low dose or combined mixtures. New detection methods are needed which focus on the screening of biological responses of an animal to such growth-promoting agents as it has been demonstrated that genomic, proteomic and metabolomics profiles are altered by xenobiotic intake. Therefore, an untargeted proteomics approach using comparative two-dimensional gel electrophoresis (2DE) was carried out to identify putative proteins altered in plasma after treatment with oestradiol, dexamethasone or prednisolone. Twenty-four male cattle were randomly assigned to four groups (n = 6) for experimental treatment over 40 days, namely a control group of non-treated cattle, and three groups administered 17β-oestradiol-3-benzoate (0.01 mg/kg, intramuscular), dexamethasone sodium phosphate (0.7 mg/day, per os) or prednisolone acetate (15 mg/day, per os), respectively. Plasma collected from each animal at day 25 post study initiation was subjected to proteomic analysis by 2DE for comparison of protein expression between treated and untreated animals. Analysis of acquired gel images revealed 22 plasma proteins which differed in expression by more than 50 % (p < 0.05) in treated animals compared to untreated animals. Proteins of interest underwent identification by LC–MS/MS analysis and were found to have associated roles in transport, blood coagulation, immune response and metabolism pathways. In this way, seven proteins are highlighted as novel biomarker candidates including transthyretin which is shown to be significantly increased in all treatment groups compared to control animals and potentially may find use as global markers of suspect anabolic practice.
Resumo:
Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a largely unsampled 'reservoir' host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts. Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution, directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology even where detailed contact data are not available, and that more extensive sampling and analysis will allow for quantification of the extent and direction of transmission between cattle and badgers. © 2012 Biek et al.
Resumo:
Diploid (2n = 2x = 20) and triploid (2n = 3x = 30) Fasciola hepatica have been reported in the UK, and in Asia diploid, triploid and mixoploid (2x/3x) Fasciola spp. exist but there is little information to indicate how common triploidy is, particularly in UK fluke. Here the ploidy of 565 adult F. hepatica from 66 naturally infected British sheep and 150 adult F. hepatica from 35 naturally infected British cattle was determined. All 715 of these parasites were diploid, based on observation of 10 bivalent chromosomes and sperm (n = 335) or, since triploids are aspermic, sperm alone (n = 380). This constitutes the first extensive analysis of the ploidy of F. hepatica field isolates from Great Britain and shows that most F. hepatica isolated from cattle and sheep are diploid and have the capacity to sexually reproduce. These data suggest that triploidy, and by extension parthenogenesis, is rare or non-existent in wild British F. hepatica populations. Given that F. hepatica is the only species of Fasciola present in Britain our results indicate that the parasite is predominantly diploid in areas where F. hepatica exists in isolation and suggests that triploidy may only originate in natural populations where co-infection of F. hepatica and its sister species Fasciola gigantica commonly occurs.