176 resultados para BCR-ABL KINASE
Resumo:
CCN3, a founding member of the CCN family of growth regulators, was linked with hematology in 2003(1) when it was detected in human serum. CCN3 is expressed and secreted by hematopoietic progenitor cells in normal bone marrow. CCN3 acts through the core stem cell signalling pathways including Notch and Bone Morphogenic Protein, connecting CCN3 with the modulation of self-renewal and maturation of a number of cell lineages including hematopoietic, osteogenic and chondrogenic. CCN3 expression is disrupted in Chronic Myeloid Leukemia as a consequence of the BCR-ABL oncogene and allows the leukemic clone to evade growth regulation. In contrast, naive cord blood progenitors undergo enhanced clonal expansion in response to CCN3. Altered CCN3 expression is associated with numerous solid tumors including glioblastoma, melanoma. adrenocortical tumours, prostate cancer and bone malignancies including osteosarcoma. Mature CCN3 protein has five distinct modules and truncated protein variants with altered function are found in many cancers. Regulation by CCN3 is therefore cell type and isoform specific. CCN3 has emerged as a key player in stem cell regulation, hematopoiesis and a crucial component within the bone marrow microenvironment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to validate the application of a commercially available multiplex reverse transcription polymerase chain reaction (RT-PCR) assay [He-mavision-7 System] for the seven most common leukemia translocations for routine molecular diagnostic hematopathology practice. A total of 98 samples, comprising four groups, were evaluated: Group 1, 16 diagnostic samples molecularly positive by our existing laboratory-developed assays for PML-RARalpha/t (15; 17) or BCR-ABL/t (9;22); Group 2, 51 diagnostic samples negative by our laboratory-developed assays for PML-RARalpha/t (15;17) or BCR-ABL/t (9;22); Group 3, 21 prospectively analyzed diagnostic cases, without prior molecular studies; and Group 4, 10 minimal residual disease (MRD) samples. Analysis of the two previously studied cohorts (Groups 1 and 2) confirmed the diagnostic sensitivity and specificity of the multiplex assay with regard to these two translocations. Additionally, however, in the
Resumo:
Secondary or late graft failure has been defined as the development of inadequate marrow function after initial engraftment has been achieved. We describe a case of profound marrow aplasia occurring 13 years after sibling allogeneic bone marrow transplantation for chronic myeloid leukaemia (CML) in first chronic phase. Although the patient remained a complete donor chimera, thereby suggesting that an unselected infusion of donor peripheral blood stem cells (PBSC) or bone marrow might be indicated, the newly acquired aplasia was thought to be immune in aetiology and some immunosuppression was therefore considered appropriate. Rapid haematological recovery was achieved after the infusion of unselected PBSC from the original donor following conditioning with anti-thymocyte globulin (ATG).
Resumo:
Immune haemolytic anaemia (IHA) is a recognised complication after allogeneic stem cell transplantation (SCT) and occurs more frequently if marrow cells have been subjected to T cell depletion (TCD). Among 58 consecutive patients who underwent TCD-allogeneic SCT from volunteer unrelated donors for the treatment of CML at the Hammersmith Hospital during a 3-year period (1 March 1996 to 28 February 1999) we identified nine cases of IHA. All patients had a strongly positive direct and indirect antiglobulin test and in eight patients the serological findings were typical of warm-type haemolysis often with antibody specificities within the Rh system. All nine cases had clinically significant haemolysis and were treated initially with prednisolone and immunoglobulin. The onset of IHA coincided with the occurrence of leukaemic relapse in six cases, and the presence of host haemopoiesis confirmed by lineage-specific chimerism in all four cases studied. Five patients received donor lymphocyte infusions (DLI); in three molecular remission and the restoration of full donor chimerism coincided with resolution of haemolysis. We conclude that in the context of leukaemic relapse, DLI is an effective therapy for IHA following allografts involving TCD.
Resumo:
We describe a single centre experience of eight consecutive patients with relapsed or refractory Ph+ ALL treated with the FLAG/idarubicin regimen followed by BMT or PBSCT. Following FLAG/idarubicin, one achieved a partial response and seven CR. All patients subsequently received allogeneic transplants: one sibling BMT, three matched unrelated (MUD) BMT and four sibling PBSCT. Two patients received second transplants with PBSC from their original BM donors following FLA/Ida with no further conditioning. Three patients are alive in CR 9, 24 and 32 months after transplant. Seven of eight patients had a cytogenetic response following FLAG/Ida induction and one of seven became bcr-abl negative. All eight patients had a complete cytogenetic response following transplant. Four of five assessable patients became p190 bcr-abl negative after transplant; three of these subsequently relapsed. Both patients with the p210 bcr-abl transcript remained bcr-abl positive in CR after transplant. FLAG/Ida was well tolerated and appears to be effective in inducing remission in relapsed Ph+ ALL. The use of FDR-containing chemotherapy without further conditioning prior to PBSCT deserves further study in heavily pre-treated patients and, in patients with relapsed ALL following BMT, may be a safer option than DLI (donor lymphocyte infusion) by avoiding the associated risk of aplasia.
Resumo:
Donor lymphocyte infusions (DLI) have been shown to enhance the graft-versus-leukaemia (GVL) effect and induce haematological and molecular remission in patients with relapsed CML following allogeneic bone marrow transplantation (BMT). The potent donor cell-mediated cytolysis following DLI may lead to a short period of aplasia before the re-establishment of donor haematopoiesis. The absence of detectable donor cells in patients prior to DLI infusion may result in permanent aplasia in certain patients. We report on four patients who relapsed 1, 3, 6.5 and 7 years post-BMT for chronic phase CML and were treated with DLI from their original BMT donor. Polymorphic short tandem repeats (STRs) were used to assess haematological chimaerism both prior to and following DLI. At the time of relapse, STR-PCR indicated the presence of donor cells in all four patients, at levels ranging from 1-40%. A clinical and molecular response was seen in 4/4 patients following a short period of cytopenia and all patients remain in clinical remission with a follow-up of 2 months-3 years post-DLI. STR-PCR indicated that a response was occurring during the period of pancytopenia when metaphase analysis was unsuccessful. Lineage-specific analysis of the cellular response to DLI was monitored using STR-PCR of peripheral blood (PB) and bone marrow (BM) lymphocyte-enriched fractions and CD2-positive and -negative T cell fractions. In one patient BM and PB CD34-positive and -negative fractions were also assessed. A change in the ratio of donor:recipient cells in the PB lymphocyte fraction was the earliest molecular indication of an anti-leukaemic response. Subsequent conversion to donor chimaerism occurred in the other lineages and the granulocyte fraction was the last lineage to convert. In conclusion, lineage-specific STR-PCR permits detailed monitoring of subtle changes in donor/recipient cell dynamics in specific lineages following DLI during the crucial pancytopenic phase and may be a useful predictor of haematological response to DLI therapy.
Resumo:
Chronic myeloid leukaemia (CML) can be treated successfully with allogeneic bone marrow transplantation (BMT) leading to long-term disease-free survival. Leukemia relapse, however, remains a significant clinical problem. Relapse following BMT presumably results from the expansion of small numbers of recipient leukaemic cells which have survived the conditioning therapy. In order to define patients who are at a high risk of leukaemia relapse, a variety of techniques have been employed to detect persistence of host haemopoiesis (mixed chimaerism, MC) or residual leukaemia (minimal residual disease, MRD). However, the precise relationship between the detection of MC and MRD post-BMT is unknown. We have investigated chimaerism and MRD status in 22 patients who were in clinical and haematological remission post-allogeneic BMT for chronic phase CML. Chimaerism was assessed using short tandem repeat PCR (STR-PCR) while BCR-ABL mRNA detection using reverse transcriptase polymerase chain reaction (RT-PCR) was performed to detect the presence of MRD. Seventeen patients received unmanipulated marrow (non-TCD) while in five patients a T cell-depleted transplant (TCD) was performed as additional GVHD prophylaxis. Chimaerism was evaluated in 18 patients (14 non-TCD, four TCD). Mixed chimaerism was an uncommon finding in recipients of unmanipulated BMT (21%) when compared to TCD BMT (100%). No evidence of MRD, as identified using the BCR-ABL mRNA RT-PCR assay, was detected in those patients who were donor chimaeras. Early and transient MC and MRD was detected in four patients (two non-TCD, two TCD) who have subsequently converted to a donor profile. One patient has stable low-level MC but remains MRD negative 4 years post-BMT. Late MC and MRD was observed in two patients who relapsed >6 years after TCD BMT for CML. We conclude that mixed chimaerism is a rare event in recipients of unmanipulated BMT and that donor chimaerism as detected by STR-PCR assay is consistent with disease-free survival and identifies patients with a low risk of leukaemic relapse post-BMT for CML.
Resumo:
Although Chronic Myeloid Leukaemia (CML) can be treated successfully with allogeneic bone marrow transplantation (BMT), leukaemia relapse remains a significant clinical problem. Molecular monitoring of the post transplant marrow can be useful in predicting relapse particularly in CML patients where the Philadelphia chromosome or its molecular counterpart, the BCR-ABL fusion messenger RNA can be used as a leukaemia specific marker of minimal residual disease (MRD). We have investigated chimaerism (using polymerase chain reaction of short tandem repeat sequences (STR-PCR)) and MRD status (using reverse transcriptase PCR of the BCR-ABL fusion mRNA) in a serial fashion in 18 patients who were in clinical and haematological remission post allogeneic BMT for chronic phase CML. Eleven patients exhibited complete donor chimaerism with no evidence of minimal residual disease. Five patients had transient or low level stable MC. Late MC and MRD was observed in two patients who relapsed > 6 years after T cell depleted BMT for CML. Thus STR-PCR is an appropriate screening test in the post transplant setting for CML patients, but those patients exhibiting mixed haemopoietic chimaerism should also be monitored using a leukaemia specific sensitive molecular assay.
Resumo:
Allogeneic bone marrow transplantation has been shown to be a very effective therapy for Chronic Granulocytic Leukemia with long term disease free survivals in excess of 60%. Relapse rates remain low at 15% following histocompatible sibling transplants and lower rates following matched unrelated donor grafts. Relapse rates however, are higher if BMT is carried out in transformation or blast crisis. Leukemic relapse in donor cells following transplantation for CGL is a rare event. The occurrence of donor leukemia however, may be under reported as accurate and sensitive investigation of the origin of relapsed leukemia following BMT requires DNA based technologies. A possible mechanism of donor leukemia in CGL is transfection of donor cells with the chimeric gene which is unique to this disease. It is possible that the malignant cells found in transformed or blast crisis of CGL may have a greater potential to transfect donor haematopoietic material. Careful evaluation of the incidence of donor leukemia using molecular biology methods may elucidate the frequency of this event following BMT for CGL.
Resumo:
A 3-year old child with juvenile chronic myeloid leukaemia received a T cell-depleted BMT from a male unrelated donor. There was early graft failure associated with increasing splenomegaly and hypersplenism. Splenectomy was performed 53 days post-transplant and was followed by autologous marrow recovery with return of leukaemia. A second unrelated donor BMT was performed 9 months later using T cell-replete marrow from a similarly matched female donor. Grade 2 GVHD involving the skin and gut responded to treatment with steroids. Chimaerism was assessed using Y-specific polymerase chain reaction (PCR) and microsatellites. Samples taken at the time of splenectomy showed no donor marrow engraftment but there was significant engraftment in the spleen. Following the second transplant, donor-type haematopoiesis was documented using a panel of microsatellite probes. The patient remains well 6 months after transplant. Splenectomy should be considered prior to transplant in patients with significant splenomegaly and hypersplenism. Partial chimaerism in the spleen, but not bone marrow, post-BMT, has not previously been documented. PCR technology is a useful and highly sensitive way to assess chimaerism post-BMT and is informative in sex-matched cases, whilst the small amount of material required is advantageous in paediatric patients.
Resumo:
The recent discovery of oncogenic drivers and subsequent development of novel targeted strategies has significantly added to the therapeutic armamentarium of anti-cancer therapies. Targeting BCR-ABL in chronic myeloid leukemia (CML) or HER2 in breast cancer has led to practice-changing clinical benefits, while promising therapeutic responses have been achieved by precision medicine approaches in EGFR mutant lung cancer, colorectal cancer and BRAF mutant melanoma. However, although initial therapeutic responses to targeted therapies can be substantial, many patients will develop disease progression within 6-12 months. An increasing application of powerful omics-based approaches and improving preclinical models have enabled the rapid identification of secondary resistance mechanisms. Herein, we discuss how this knowledge has translated into rational, novel treatment strategies for relapsed patients in genomically selected cancer populations.