58 resultados para Absorption of light
Resumo:
This paper considers the concept of light pollution and its connections to moral geographies of landscape in Britain. The paper aims to provide a greater understanding of light pollution in the present day, where the issue connects to policy debates about energy efficiency, crime, health, ecology and night time aesthetics, whilst also engaging with new areas of research in cultural geography. The main sources of investigation are the Campaign to Protect Rural England and the British Astronomical Association’s Campaign for Dark Skies (est. 1990). Using interviews, archival and textual analysis, the paper examines this anti-light-pollution lobby, looking at the lead-up to the formation of the Campaign as well as its ongoing influence. A moral geography of light pollution is identified, drawing on two interconnected discourses – a notion of the ‘astronomical sublime’ and the problem of urbanization. Whilst the former is often invoked, both through visual and linguistic means, by anti-light pollution campaigners, the latter is characterized as a threat to clear night skies, echoing earlier protests against urban sprawl. Complementing a growing area of research, the geographies of light and darkness, this paper considers the light pollution lobby as a way of investigating the fundamental relationship between humankind and the cosmos in the modern age.
Resumo:
We report the investigations of spin wave modes of arrays of Ni and Co nanorods using Brillouin light scattering. We have revealed the significant influence of spin wave modes along the nanorod axis in contrast to infinite magnetic nanowires. Unusual optical properties featuring an inverted Stokes/anti-Stokes asymmetry of the Brillouin scattering spectra have been observed. The spectrum of spin wave modes in the nanorod array has been calculated and compared with the experiment. Experimental observations are explained in terms of a combined numerical-analytical approach taking into account both the low aspect ratio of individual magnetic nanorods and dipolar magnetic coupling between the nanorods in the array. The optical studies of spin-wave modes in nanorod metamaterials with low aspect ratio nanorods have revealed new magnetic and magneto-optical properties compared to continuous magnetic films or infinite magnetic nanowires. Such magnetic artificial materials are important class of active metamaterials needed for prospective data storage and signal processing applications. © 2012 Elsevier B.V.
Resumo:
The light output from nominally smooth Al-Ox-Au tunnel junctions is observed to be substantially independent of the deposition rate of the Au film electrode. Films deposited quickly (2 nm s-1) and those deposited slowly (0.16 nm s-1) have similar spectral dependences and intensities. (This is in contrast to roughened films where those deposited quickly give out less light, especially towards the blue end of the spectrum.) The behaviour can be interpreted in terms of the ratio l(ph)/l(em) where l(ph) and l(em) are the mean free paths of surface plasmons between external photon emissions and internal electromagnetic absorptions respectively. Once l(ph)/l(em) exceeds 100, as it does on smooth films, grain size has little further effect on the spectral shape of the light output. In fast-deposited films there are two compensating effects on the output intensity: grain boundary scattering decreases it and greater surface roughness increases it.
Resumo:
In recent years, wide-field sky surveys providing deep multi-band imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence of a sub-population of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for supernova cosmology, offering a standardizable candle good to an intrinsic scatter of 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light curve properties and an expanded grid of progenitor properties, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.
Resumo:
A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbamyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 microm ODS (C18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min-1 and the column temperature was maintained at 30 degrees C. Galactosamine hydrochloride (Gal-HCl) was used as an internal standard. Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32+/-1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15+/-0.1 cm2. The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1% v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 microg ml-1. The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) <12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <or=-5.60 and <or=-8.00, respectively. Using this assay, it was found that GL-HCl permeates through human skin with a flux 1.497+/-0.42 microg cm-2 h-1, a permeability coefficient of 5.66+/-1.6x10(-6) cm h-1 and with a lag time of 10.9+/-4.6 h.
Resumo:
Hemp-lime concrete is a sustainable alternative to standard wall construction materials. It boasts excellent hygrothermal properties in part deriving from its porous structure. This paper investigates the acoustic properties of hemp-lime concrete, using binders developed from hydrated lime and pozzolans as well as hydraulic and cementicious binders. To assess the acoustic absorption of hemp-lime walls, as they are commonly finished in practical construction, wall sections are rendered and the resulting impact on absorption is evaluated. Hemp-concretes with lime-pozzolan binders display superior acoustic properties relative to more hydraulic binders. These are diminished when rendered, as the open surface porosity is affected, however hemp-lime construction offers the potential to meet standard and guideline targets for spaces requiring acoustic treatment.
Resumo:
The collisional (or free-free) absorption of soft x rays in warm dense aluminium remains an unsolved problem. Competing descriptions of the process exist, two of which we compare to our experimental data here. One of these is based on a weak scattering model, another uses a corrected classical approach. These two models show distinctly different behaviors with temperature. Here we describe experimental evidence for the absorption of 26-eV photons in solid density warm aluminium (Te≈1 eV). Radiative x-ray heating from palladium-coated CH foils was used to create the warm dense aluminium samples and a laser-driven high-harmonic beam from an argon gas jet provided the probe. The results indicate little or no change in absorption upon heating. This behavior is in agreement with the prediction of the corrected classical approach, although there is not agreement in absolute absorption value. Verifying the correct absorption mechanism is decisive in providing a better understanding of the complex behavior of the warm dense state.
Resumo:
The authors present experimental results showing how the use of a high contrast femtosecond laser system allows better optimization of K emission from a Cu target. The shorter scale-length preformed plasma is better optimized for resonance absorption of the laser light when the laser is moved away from best focus. The experimental data show a central peak of K emission at tight focus with strong secondary peaks at large offset. The use of these secondary peaks results in a much reduced hard x-ray background and should lead to shorter K pulses than at tight focus.
Resumo:
The possibility of arbitrarily "adding" and "subtracting" single photons to and from a light field may give access to a complete engineering of quantum states and to fundamental quantum phenomena. We experimentally implemented simple alternated sequences of photon creation and annihilation on a thermal field and used quantum tomography to verify the peculiar character of the resulting light states. In particular, as the final states depend on the order in which the two actions are performed, we directly observed the noncommutativity of the creation and annihilation operators, one of the cardinal concepts of quantum mechanics, at the basis of the quantum behavior of light. These results represent a step toward the full quantum control of a field and may provide new resources for quantum information protocols