155 resultados para ATOMIC ORBITALS
Resumo:
A tight-binding model is developed to describe the electron-phonon coupling in atomic wires under an applied voltage and to model, their inelastic current-voltage spectroscopy. Particular longitudinal phonons are found to have greatly enhanced coupling to the electronic states of the system. This leads to a large drop in differential conductance at threshold energies associated with these phonons. It is found that with increasing tension these energies decrease, while the size of the conductance drops increases, in agreement with experiment.
Resumo:
A total energy tight-binding model with a basis of just one s state per atom is introduced. It is argued that this simplest of all tight-binding models provides a surprisingly good description of the structural stability and elastic constants of noble metals. By assuming inverse power scaling laws for the hopping integrals and the repulsive pair potential, it is shown that the density matrix in a perfect primitive crystal is independent of volume, and structural energy differences and equations of state are then derived analytically. The model is most likely to be of use when one wishes to consider explicitly and self-consistently the electronic and atomic structures of a generic metallic system, with the minium of computation expense. The relationship to the free-electron jellium model is described. The applicability of the model to other metals is also considered briefly.
Resumo:
Recent experiments suggest that gold single-atom contacts and atomic chains break at applied voltages of 1 to 2 V. In order to understand why current flow affects these defect-free conductors, we have calculated the current-induced forces on atoms in a Au chain between two Au electrodes. These forces are not by themselves sufficient to rupture the chain. However, the current reduces the work to break the chain, which results in a dramatic increase in the probability of thermally activated spontaneous fracture of the chain. This current-induced embrittlement poses a fundamental limit to the current-carrying capacity of atomic wires.
Resumo:
We present a self-consistent tight-binding formalism to calculate the forces on individual atoms due to the flow of electrical current in atomic-scale conductors. Simultaneously with the forces, the method yields the local current density and the local potential in the presence of current flow, allowing a direct comparison between these quantities. The method is applicable to structures of arbitrary atomic geometry and can be used to model current-induced mechanical effects in realistic nanoscale junctions and wires. The formalism is implemented within a simple Is tight-binding model and is applied to two model structures; atomic chains and a nanoscale wire containing a vacancy.
Resumo:
The spectrum of collective excitations of oblate toroidal condensates within the Bogoliubov approximation was studied, and the dynamical stability of ring currents around the torus explored. The transition from spheroidal to toroidal geometry of the trap displaced the energy levels into narrow bands. A simple, but accurate, formula was detailed for the lowest angular acoustic modes of excitation, and the splitting energy when a background current is present.
Resumo:
Double beam modulation is widely used in atomic collision experiments in the case where the noise arising froth each of the beams exceeds the measured signal. A method for minimizing the statistical uncertainty in a measured signal in a given time period is discussed, and a flexible modulation and counting system based on a low cost PIC microcontroller is described. This device is capable of modifying the acquisition parameters in real time during the course of an experimental run. It is shown that typical savings in data acquisition time of approximately 30% can be achieved using this optimized modulation scheme.
State selective electron capture by state prepared beams of multiply charged ions in atomic hydrogen
Resumo:
Application of a parallel-projection inversion technique to z-scan spectra of multiply charged xenon and krypton ions, obtained by non-resonant field ionization of neutral targets, has for the first time permitted the direct observation of intensity-dependent ionization probabilities. These ionization efficiency curves have highlighted the presence of structure in the tunnelling regime, previously unobserved under full-volume techniques.
Resumo:
The interaction of a 60 fs 790 nm laser pulse with beams of Ar+, C+, H2+, HD+ and D2+ are discussed. Intensities up to 10^16 Wcm-2 are employed. An experimental z-scanning technique is used to resolve the intensity dependent processes in the confocal volume.