62 resultados para 551
Resumo:
Strategies available to evaluate the performance of in situ permeable reactive barriers are currently not well developed and often rely on fluid and media sampling directly from the permeable reactive barrier (PRB). Here, we investigate the utility of the self-potential (SP) method as a technique to monitor in situ PRB performance. Our field study was conducted at in situ biological PRB in Portadown, Northern Ireland, UK, which was emplaced to assist in the remediation of groundwater contamination (e.g., hydrocarbons, ammonia) that resulted from the operations and waste disposal practices of a former gasworks. Borehole SP measurements were collected during the injection of contaminant groundwater slugs in an attempt to monitor/detect the response of the microbial activity associated with the breakdown of the added contaminants into the PRB. In addition, an uncontaminated groundwater slug was injected into a different portion of the PRB as a ‘control’ and SP measurements were collected for comparison to the SP response of the contaminant slugs. The results of the SP signals due to the contaminant injections show that the magnitude of the response was relatively small (<10 mV) yet showed a consistent decrease during both contaminant injections. The net decrease in SP recorded during the contaminant injections slowly rebounded to near background values through ~44 hours post-injection. The SP response during the uncontaminated injection showed a slight, albeit negligible (within the margin of error), 1 mV increase in the measured SP signals, in contrast to the contaminant injections. The results of the SP signals recorded from the uncontaminated groundwater injection also persisted through a period of ~47 hours after injection but show a net increase in SP relative to pre-injection values. Based on the difference in SP response between the contaminated and uncontaminated injections, we suggest that the responses are likely to be the result of differences in the chemistry of the injection types (contaminated versus uncontaminated) and in situ groundwater. We argue that the SP signals associated with the contaminated injections are dominated by diffusion (electrochemical) potential, possibly enhanced by a microbial effect. While the results of our investigation show a consistent SP response associated with the contaminant injections that is dominated by diffusional effects, further studies are required in order to better understand the effect of microbial activity on SP signals and the potential utility for the SP method to detect/monitor changes that may be indicative of biological PRB performance.
Resumo:
The role of habitat structure in controlling the composition of assemblages has often been studied, but is rarely manipulated so that it is distinguishable from other factors. Differences in habitat structure as determined by differences in mussel size structure may affect the diversity of assemblages associated with mussel beds. Previous studies examining the effect of the size of individual mussels in a patch on the diversity of associated macro-faunal assemblages confounded the age of the patch with the size of the mussels. We manipulated the age of mussel patches and the size of the mussels within them to test experimentally whether the size of mussels influenced the structure of associated assemblages. At one of the two locations considered, the structure of macro-faunal assemblages in patches of larger mussels differed significantly from those in patches of the same age composed of smaller mussels. At this location, the size of mussels did not affect species richness but the abundance and proportion of organisms present differed depending on the size of the mussels. Here patches of larger mussels contained greater numbers of Nematodes and Oligochaetes and a lower abundance of taxa, such as faera forsmani and Lepidonotus clava. We also found that invertebrate assemblages in general differed between the two locations. The effect of the size structure of mussels, however, varied spatially demonstrating that the effect of habitat structure on the diversity of associated assemblages is context dependent.
Resumo:
New elements associated withWeb 2.0 relating to interactivity and end-user focus have combined with the availability of newlevels of information to encourage the development of what may be termed a Gov 2.0 approach.This, in combination with recent initiatives in the modernising government programme, has emphasised new levels of public participation and engagement with government as well as a re-engineering of public services tomake them more responsive to their end users. Adopting a governmentality perspective, it is argued that this involves a wider process of governing through constructing and reconstructing ideas of the public, community and individual citizen-consumers who take on a role in their own governance. It is argued that this fundamental re-working of the nature of what is public represents a constitutional change that is perhaps more signi¢cant than the constitutional reform programme directed to formal government which attracts more attention
Resumo:
One mechanism for physiological adjustment of small mammals to different habitats and different seasons is by seasonal acclimatization of their osmoregulatory system. We examined the abilities of broad-toothed field mice (Apodemus mystacinus) from different ecosystems ('sub-alpine' and 'Mediterranean') to cope with salinity stress under short day (SD) and long day (W) photoperiod regimes. We compared urine volume, osmolarity, urea and electrolyte (sodium, potassium and chloride) concentrations. Significant differences were noted in the abilities of mice from the two ecosystems to deal with salinity load; in particular sub-alpine mice produced less concentrated urine than Mediterranean mice with SD- sub-alpine mice seeming to produce particularly dilute urine. Urea concentration generally decreased with increasing salinity, whereas sodium and potassium levels increased, however SD- sub-alpine mice behaved differently and appeared not to be able to excrete electrolytes as effectively as the other groups of mice. Differences observed provide an insight into the kinds of variability that are present within populations inhabiting different ecosystems, thus how populations may be able to respond to potential changes in their environment. Physiological data pertaining to adaptation to increased xeric conditions, as modelled by A. mystacinus, provides valuable information as to how other species may cope with potential climatic challenges.
Resumo:
Background:We have previously demonstrated that Tcf-4 regulates osteopontin (OPN) in rat breast epithelial cells, Rama37. In this report, we have examined the importance of this regulation in human breast cancer.Methods:The regulatory roles of Tcf-4 on cell invasion and OPN expression were investigated. The mRNA expression of Tcf-4 and OPN, and survival of breast cancer patients were correlated.Results:Tcf-4 enhanced cell invasion in both MCF10AT and MDA MB 231 breast cancer cells by transcriptionally activating OPN expression. Osteopontin was activated by Wnt signalling in MDA MB 231 cells. Paradoxical results on Tcf-4-regulated OPN expression in MCF10AT (activation) and Rama37 (repression) cells were shown to be a result of differential Wnt signalling competency in MCF10AT and Rama37 cells. High levels of OPN and Tcf-4 mRNA expression were significantly associated with survival in breast cancer patients. Most importantly, Tcf-4-positive patients had a poorer prognosis when OPN was overexpressed, while OPN-negative patients had a better prognosis when Tcf-4 was overexpressed.Conclusion:Our results suggest that Tcf-4 can act as a repressor or activator of breast cancer progression by regulating OPN expression in a Wnt-dependent manner and that Tcf-4 and OPN together may be a novel prognostic indicator for breast cancer progression.
Resumo:
The purpose of this article is to examine the process of collaborative working between teachers located in separate faith-based schools in Northern Ireland. Drawing on theories of intergroup relations, and with reference to in-depth interviews with teachers in post-primary schools, the article shows that despite earlier research which identified a reluctance amongst teachers in the different sectors to work together, most Catholic and Protestant teachers are motivated to collaborate to develop a more broadly based curriculum for pupils. However, it has also been shown that teachers tend to studiously avoid discussing their differences in mixed-faith contexts, and it is argued that this may have the potential to constrain collaborative relations. It is concluded that without strategic direction from policy makers to assist teachers in negotiating and exploring their differences it will be difficult to build the trust which is likely to sustain collaborative relations.
Resumo:
Traditional static analysis fails to auto-parallelize programs with a complex control and data flow. Furthermore, thread-level parallelism in such programs is often restricted to pipeline parallelism, which can be hard to discover by a programmer. In this paper we propose a tool that, based on profiling information, helps the programmer to discover parallelism. The programmer hand-picks the code transformations from among the proposed candidates which are then applied by automatic code transformation techniques.
This paper contributes to the literature by presenting a profiling tool for discovering thread-level parallelism. We track dependencies at the whole-data structure level rather than at the element level or byte level in order to limit the profiling overhead. We perform a thorough analysis of the needs and costs of this technique. Furthermore, we present and validate the belief that programs with complex control and data flow contain significant amounts of exploitable coarse-grain pipeline parallelism in the program’s outer loops. This observation validates our approach to whole-data structure dependencies. As state-of-the-art compilers focus on loops iterating over data structure members, this observation also explains why our approach finds coarse-grain pipeline parallelism in cases that have remained out of reach for state-of-the-art compilers. In cases where traditional compilation techniques do find parallelism, our approach allows to discover higher degrees of parallelism, allowing a 40% speedup over traditional compilation techniques. Moreover, we demonstrate real speedups on multiple hardware platforms.
Resumo:
This study investigates age-related shifts in the relative importance of systolic (SBP) and diastolic (DBP) blood pressures as predictors of stroke and whether these relations are influenced by other cardiovascular risk factors. Using 34 European cohorts from the MOnica, Risk, Genetics, Archiving, and Monograph (MORGAM) Project with baseline between 1982 and 1997, 68 551 subjects aged 19 to 78 years, without cardiovascular disease and not receiving antihypertensive treatment, were included. During a mean of 13.2 years of follow-up, stroke incidence was 2.8%. Stroke risk was analyzed using hazard ratios per 10-mm Hg/5-mm Hg increase in SBP/DBP by multivariate-adjusted Cox regressions, including SBP and DBP simultaneously. Because of nonlinearity, DBP was analyzed separately for DBP =71 mm Hg and DBP
Resumo:
The aim of the study was to determine the time-dependent formation of arsenic-phytochelatin (As-PC) complexes in the roots, stems and leaves of an arsenic-nontolerant plant (Helianthus annuus) during exposure to 66 mol l(-1) arsenite (As(III)) or arsenate (As(V)). We used our previously developed method of simultaneous element-specific (inductively coupled plasma mass spectrometry, ICP-MS) and molecular-specific (electrospray-ionization mass spectrometry, ES-MS) detection systems interfaced with a suitable chromatographic column and eluent conditions, which enabled us to identify and quantify As-PC complexes directly. Roots of As-exposed H. annuus contained up to 14 different arsenic species, including the complex of arsenite with two (gamma-Glu-Cys)(2)-Gly molecules [As((III))-(PC(2))(2)], the newly identified monomethylarsonic phytochelatin-2 or (gamma-Glu-Cys)(2)-Gly CH(3)As (MA((III))-PC(2)) and at least eight not yet identified species. The complex of arsenite with (gamma-Glu-Cys)(3)-Gly (As((III))-PC(3)) and the complex of arsenite with glutathione (GSH) and (gamma-Glu-Cys)(2)-Gly (GS-As((III))-PC(2)) were present in all samples (roots, stems and leaves) taken from plants exposed to As. The GS-As((III))-PC(2) complex was the dominant complex after 1 h of exposure. As((III))-PC(3) became the predominant As-PC complex after 3 h, binding up to 40% of the As present in the exposed plants. No As-PC complexes were found in sap (mainly xylem sap from the root system), in contrast to roots, stems and leaves, which is unequivocal evidence that As-PC complexes are not involved in the translocation of As from root to leaves of H. annuus.