444 resultados para Peggy Shaw
Resumo:
Amphibian skin is a rich and unique source of novel bioactive peptides most of which are endowed with either antimicrobial or pharmacological properties. Here we report the identification and structural characterization of a novel peptide, named senegalin, which possesses both activities. Senegalin is a hexadecapeptide amide (FLPFLIPALTSLISSL-NH2) of unique primary structure found in the skin secretion of the African running frog, Kassina senegalensis. The structure of the biosynthetic precursor of senegalin, deduced from cloned skin cDNA, consists of 76 amino acid residues and displays the typical domain organization of an amphibian skin peptide precursor. Both natural senegalin and its synthetic replicate
displayed antimicrobial and myotropic activities. Senegalin was active against Staphylococcus aureus (MIC 50µM) and Candida albicans (MIC 150µM) but was nonhaemolytic at concentrations up to and including 150µM. In contrast, senegalin induced a dose-dependent contraction of rat urinary bladder smooth muscle (EC50 2.9nM) and a dosedependent relaxation of rat tail artery smooth muscle (EC50 37.7nM). Senegalin thus represents a prototype biologically-active amphibian skin peptide and illustrates the fact thatamphibian skin secretion peptidomes continue to be unique sources of such molecules.
Resumo:
The Waxy Monkey Leaf Frog, Phyllomedusa sauvagei, has been extensively-studied for many years, and a broad spectrum of bioactive peptides has been found in its skin secretions. Here we report the discovery of a novel tryptophyllin (TPH) peptide, named PsT-1, from this frog species. Skin secretions from specimens of P. sauvagei were collected by mild electrical stimulation. Peptides were identified and characterized by transcriptome cloning, and the structure was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This novel peptide was encoded by a single precursor of 61 amino acid residues, whose primary structure was deduced from cloned skin cDNA. Analysis of different amphibian tryptophyllins revealed that PsT-1 exhibited a high degree of primary structural similarity to its homologues, PdT-1 and PdT-2, from the Mexican giant leaf frog, Pachymedusa dacnicolor. A synthetic replicate of PsT-1 was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle. It was also found that PsT-1 had an anti-proliferative effect on three different human prostate cancer cell lines (LNCaP/PC3/DU145), by use of an MTT assay coupled with direct cell counting as measures of cell growth. These data indicate that PsT-1 is a likely bradykinin receptor antagonist and its biological effects are probably mediated through bradykinin receptors. As a BK antagonist, PST-1, with antagonistic effects on BK in artery smooth muscle, inhibition of proliferation in prostate cancer cells and lack of undesirable side effects, may have potential in cardiovascular, inflammatory and anticancer therapy.
Resumo:
Voltage-gated sodium channels (VGSCs) play a crucial role in epilepsy. The expressions of different VGSCs subtypes are varied in diverse animal models of epilepsy that may reflect their multiple phenotypes or the complexity of the mechanisms of epilepsy. In a previous study, we reported that NaV1.1 and NaV1.3 were up-regulated in the hippocampus of the spontaneously epileptic rat (SER). In this study, we further analyzed both the expression and distribution of the typical VGSC subtypes NaV1.1, NaV1.2, NaV1.3 and NaV1.6 in the hippocampus and in the cortex of the temporal lobe of two genetic epileptic animal models: the SER and the tremor rat (TRM). The expressions of calmodulin (CaM) and calmodulin-dependent protein kinase II (CaMKII) were also analyzed with the purpose of assessing the effect of the CaM/CaMKII pathway in these two models of epilepsy. Increased expression of the four VGSC subtypes and CaM, accompanied by a decrease in CaMKII was observed in the hippocampus of both the SERs and the TRM rats. However, the changes observed in the expression of VGSC subtypes and CaM were decreased with an elevated CaMKII in the cortex of their temporal lobes. Double-labeled immunofluorescence data suggested that in SERs and TRM rats, the four subtypes of the VGSC proteins were present throughout the CA1, CA3 and dentate gyrus regions of the hippocampus and temporal lobe cortex and these were co-localized in neurons with CaM. These data represent the first evidence of abnormal changes in expression of four VGSC subtypes (NaV1.1, NaV1.2, NaV1.3 and NaV1.6) and CaM/CaMKII in the hippocampus and temporal lobe cortex of SERs and TRM rats. These changes may be involved in the generation of epileptiform activity and underlie the observed seizure phenotype in these rat models of genetic epilepsy.
Resumo:
One novel Kunitz BPTI-like peptide designated as BBPTI-1, with chymotrypsin inhibitory activity was identified from the venom of Burmese Daboia russelii siamensis. It was purified by three steps of chromatography including gel filtration, cation exchange and reversed phase. A partial N-terminal sequence of BBPTI-1, HDRPKFCYLPADPGECLAHMRSF was obtained by automated Edman degradation and a Ki value of 4.77. nM determined. Cloning of BBPTI-1 including the open reading frame and 3' untranslated region was achieved from cDNA libraries derived from lyophilized venom using a 3' RACE strategy. In addition a cDNA sequence, designated as BBPTI-5, was also obtained. Alignment of cDNA sequences showed that BBPTI-5 exhibited an identical sequence to BBPTI-1 cDNA except for an eight nucleotide deletion in the open reading frame. Gene variations that represented deletions in the BBPTI-5 cDNA resulted in a novel protease inhibitor analog. Amino acid sequence alignment revealed that deduced peptides derived from cloning of their respective precursor cDNAs from libraries showed high similarity and homology with other Kunitz BPTI proteinase inhibitors. BBPTI-1 and BBPTI-5 consist of 60 and 66 amino acid residues respectively, including six conserved cysteine residues. As these peptides have been reported to have influence on the processes of coagulation, fibrinolysis and inflammation, their potential application in biomedical contexts warrants further investigation. © 2013 Elsevier Inc.
Resumo:
Snake venom constitutes one of the most complex mixtures of naturally-occurring toxic proteins/polypeptides and a large number of these possess very profound biological activities. Disintegrins, that are commonly found in viper venoms, are low molecular weight proteins that usually contain an -Arg-Gly-Asp- (-RGD-) motif that is known to be involved in cell adhesion ligand recognition, binding specifically to cell surface integrin receptors and also exhibiting platelet anti-aggregation activity.
Here, we report for the first time, the successful cloning of three cDNAs encoding disintegrin precursors from lyophilised venom-derived libraries of Atheris chlorechis, Atheris nitschei and Atheris squamigera, respectively. All of these disintegrins belong to the short-coding class and all exhibit high degrees of structural identity, both in their amino acid sequences and in the arrangement of their functional domains. Mass spectrometric analyses of the HPLC-separated/in-gel digested venom proteins was performed to characterise the mature disintegrins as expressed in the venom proteome. Studies on both the structures and conserved sites within these disintegrins are of considerable theoretical interest in the field of biological evolution and in the development of new research tools or novel templates for drug design.
Resumo:
Here we report two novel 17-mer amidated linear peptides (TsAP-1 and TsAP-2) whose structures were deduced from cDNAs cloned from a venom-derived cDNA library of the Brazilian yellow scorpion, Tityus serrulatus. Both mature peptides were structurally-characterised following their location in chromatographic fractions of venom and synthetic replicates of each were subjected to a range of biological assays. The peptides were each active against model test micro-organisms but with different potencies. TsAP-1 was of low potency against all three test organisms (MICs 120-160µM), whereas TsAP-2 was of high potency against the Gram-positive bacterium, Staphylococcus aureus (MIC 5µM) and the yeast, Candida albicans (10µM). Haemolytic activity of TsAP-1 was low (4% at 160µM) and in contrast, that of TsAP-2 was considerably higher (18% at 20µM). Substitution of four neutral amino acid residues with Lys residues in each peptide had dramatic effects on their antimicrobial potencies and haemolytic activities, particularly those of TsAP-1. The MICs of the enhanced cationic analogue (TsAP-S1) were 2.5µM for S.aureus/C.albicans and 5µM for E.coli but with an associated large increase in haemolytic activity (30% at 5µM). The same Lys residue substitutions in TsAP-2 produced a dramatic effect on its MIC for E.coli lowering this from >320µM to 5µM. TsAP-1 was ineffective against three of the five human cancer cell lines tested while TsAP-2 inhibited the growth of all five. Lys residue substitution of both peptides enhanced their potency against all five cell lines with TsAp-S2 being the most potent with IC50 values ranging between 0.83 and 2.0 µM. TsAP-1 and TsAP-2 are novel scorpion venom peptides with broad spectrum antimicrobial and anticancer cell activities the potencies of which can be significantly enhanced by increasing their cationicity.
Resumo:
Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.
Resumo:
We determined whether oxidative damage in collagen is increased in (1) patients with diabetes; (2) patients with diabetic complications; and (3) subjects from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, with comparison of subjects from the former standard vs intensive treatment groups 4 years after DCCT completion.
Resumo:
Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p <0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p <0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p <0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p <0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.
Resumo:
A dose of 50 mg of acarbose was administered with a standard breakfast to 13 subjects with dumping syndrome. Significant attenuation of hyperglycaemia (p less than 0.01) was observed, and rises in plasma gastric inhibitory polypeptide, insulin and enteroglycagon were reduced (p less than 0.05). Plasma levels of neurotensin, vasoactive intestinal polypeptide and somatostatin were not affected. Dumping score was reduced, but this did not achieve statistical significance. In a longer-term study, 9 patients took acarbose, 50 mg t.i.d., for 1 month. No significant reduction in the number or severity of dumping attacks was observed, but a majority expressed a preference for the drug and some individuals experienced a marked improvement of symptoms.
Resumo:
Amphibian skin secretions contain a plethora of pharmacologically-active substances and represent established sources of bioactive peptides, including tachykinins. Tachykinins are one of the most widely-studied peptide families in animals and are found in neuroendocrine tissues from the lowest vertebrates to mammals. They are characterized by the presence of a highly-conserved C-terminal pentapeptide amide sequence motif (-FXGLM-amide) that also constitutes the bioactive core of the peptide. Amidation of the C-terminal methioninyl residue appears to be mandatory in the expression of biological activity. Here, we describe the isolation, characterization and molecular cloning of a novel tachykinin named ranachensinin, from the skin secretion of the Chinese brown frog, Rana chensinensis. This peptide, DDTSDRSN QFIGLM-amide, contains the classical C-terminal pentapeptide amide motif in its primary structure and an Ile (I) residue in the variable X position. A synthetic replicate of ranachensinin, synthesized by solid-phase Fmoc chemistry, was found to contract the smooth muscle of rat urinary bladder with an EC50 of 20.46 nM. However, in contrast, it was found to be of low potency in contraction of rat ileum smooth muscle with an EC50 of 2.98 µM. These data illustrate that amphibian skin secretions continue to provide novel bioactive peptides with selective effects on functional targets in mammalian tissues.
Resumo:
OBJECTIVE - To describe and compare the associations of serum lipoproteins and apolipoproteins with diabetic retinopathy. RESEARCH DESIGN AND METHODS - This was a cross-sectional study of 224 diabetic patients (85 type 1 and 139 type 2) froma diabetes clinic. Diabetic retinopathy was graded from fundus photographs according to the Airlie House Classification system and categorized into mild, moderate, and vision-threatening diabetic retinopathy (VTDR). Serum traditional lipids (total, LDL, non-HDL, and HDL cholesterol and triglycerides) and apolipoprotein AI (apoAI), apolipoprotein B (apoB), and the apoB-to-apoAI ratio were assessed. RESULTS - Diabetic retinopathy was present in 133 (59.4%) individuals. After adjustment for age, sex, diabetes duration, A1C, systolic blood pressure, and diabetes medications, the HDL cholesterol level was inversely associated with diabetic retinopathy (odds ratio 0.39 [95% CI 0.16-0.94], highest versus lowest quartile; P = 0.017). The ApoAI level was inversely associated with diabetic retinopathy (per SD increase, 0.76 [95% CI 0.59-0.98]), whereas apoB (per SD increase, 1.31 [1.02-1.68]) and the apoB-to-apoAI ratio (per SD increase, 1.48 [1.13-1.95]) were positively associated with diabetic retinopathy. Results were similar for mild to moderate diabetic retinopathy and VTDR. Traditional lipid levels improved the area under the receiver operating curve by 1.8%, whereas apolipoproteins improved the area by 8.2%. CONCLUSIONS - ApoAI and apoB and the apoB-to-apoAI ratio were significantly and independently associated with diabetic retinopathy and diabetic retinopathy severity and improved the ability to discriminate diabetic retinopathy by 8%. Serum apolipoprotein levels may therefore be stronger biomarkers of diabetic retinopathy than traditional lipid measures. © 2011 by the American Diabetes Association.