340 resultados para IONIC LIQUID ELECTROLYTE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF; or nitrate, NO). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li, X and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g with a good efficiency (99%) is observed in the DES based on the LiNO salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. © 2013 the Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work provides a first-time-study of Azepanium-based ionic liquids (ILs) as electrolyte components for electrochemical double layer capacitors (EDLCs). Herein, two Azepanium-based ILs, namely N-methyl, N-butyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp(14)TFSI) and N-methyl, N-hexyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp(16)TFSI) were compared with the established IL N-butyl, N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr(14)TFSI) in terms of viscosity, conductivity, thermal stability and electrochemical behavior in EDLC systems. The ILs' operative potentials were found to be comparable, leading to operative voltages up to 3.5 V without significant electrolyte degradation. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we address the thermal properties of selected members of a
homologous series of alkyltriethylammonium bisf(trifluoromethyl)sulfonylgimide ionic
liquids. Their phase and glass transition behavior, as well as their standard isobaric heat
capacities at 298.15 K, were studied using differential scanning calorimetry (DSC),
whereas their decomposition temperature was determined by thermal gravimetry analysis.
DSC was further used to measure standard molar heat capacities of the studied ionic liquids
and standard molar heat capacity as a function of temperature for hexyltriethylammonium,
octyltriethylammonium, and dodecyltriethylammonium bisf(trifluoromethyl)sulfonylgimide
ionic liquids. Based on the data obtained, we discuss the influence of the alkyl chain
length of the cation on the studied ionic liquids on the measured properties. Using viscosity
data obtained in a previous work, the liquid fragility of the ionic liquids is then discussed.
Viscosity data were correlated by the VTF equation using a robust regression along a
gnostic influence function. In this way, more reliable VTF model parameters were obtained than in our previous work and a good estimate of the liquid fragility of the ionic liquids was made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable liquid and solid salts in the form of elusive hemiacetals, appended with fragrant alcohols, have been synthesised as pro-fragrances, and the controlled release of these fragrances, triggered by water, is demonstrated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide, [S111][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN111][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, xs, in each solvent to the pure solvent. In this case, xs is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm-1 were observed in the case of the [S 111][TFSI] + ACN and [HN111][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid-solid phase transitions, TS-S, with extremely low melting entropies, indicating a strong organizational structure by easy rotation of methyl group. These ILs can be classified as plastic crystal materials and are promising as ambient-temperature solid electrolytes. © 2013 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been found that the catalytic activity and selectivity of a metal film deposited on a solid electrolyte could be enhanced dramatically and in a reversible way by applying an electrical current or potential between the metal catalyst and the counter electrode (also deposited on the electrolyte). This phenomenon is know as NEMCA [S. Bebelis, C.G. Vayenas, Journal of Catalysis, 118 (1989) 125-146.] or electrochemical promotion (EP) [J. Prichard, Nature, 343 (1990) 592.] of catalysis. Yttria-doped barium zirconate, BaZr0.9Y0.1O3 - α (BZY), a known proton conductor, has been used in this study. It has been reported that proton conducting perovskites can, under the appropriate conditions, act also as oxide ion conductors. In mixed conducting systems the mechanism of conduction depends upon the gas atmosphere that to which the material is exposed. Therefore, the use of a mixed ionic (oxide ion and proton) conducting membrane as a support for a platinum catalyst may facilitate the tuning of the promotional behaviour of the catalyst by allowing the control of the conduction mechanism of the electrolyte. The conductivity of BZY under different atmospheres was measured and the presence of oxide ion conduction under the appropriate conditions was confirmed. Moreover, kinetic experiments on ethylene oxidation corroborated the findings from the conductivity measurements showing that the use of a mixed ionic conductor allows for the tuning of the reaction rate. © 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of liquid rare-earth chlorometallate complexes with alkyl-phosphonium cations, [P666 14]+, has been synthesised and characterised. EXAFS confirmed the predominant liquid-state speciation of the [LnCl6]3- of the series with Ln = Nd, Eu, Dy. The crystal structure of the shorter-alkyl-chain cation analogue [P4444]+ has been determined and exhibits a very large unit cell. The luminescence properties, with visible light emissions of the liquid Tb, Eu, Pr and Sm and the NIR emissions for the Nd and Er compounds were determined. The effective magnetic moments were measured and fitted for the Nd, Tb, Ho, Dy, Gd and Er samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbons are the main electrode materials used in supercapacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density capacity will improve their potential for commercial implementation.
In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for supercapacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electrochemical double layer (ECDL) capacitance and energy density.
The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte.
This perspective will provide an overview of the current state of the art research on supercapacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance supercapacitors for different applications including those requiring mechanical flexibility and biocompatibility.

Relevância:

30.00% 30.00%

Publicador: