309 resultados para body
Resumo:
Laughter is a ubiquitous social signal in human interactions yet it remains understudied from a scientific point of view. The need to understand laughter and its role in human interactions has become more pressing as the ability to create conversational agents capable of interacting with humans has come closer to a reality. This paper reports on three aspects of the human perception of laughter when context has been removed and only the body information from the laughter episode remains. We report on ability to categorise the laugh type and the sex of the laugher; the relationship between personality factors with laughter categorisation and perception; and finally the importance of intensity in the perception and categorisation of laughter.
Resumo:
AIMS: We report the outcomes of a large lung stereotactic ablative body radiotherapy (SABR) programme for primary non-small cell lung cancer (NSCLC) and pulmonary metastases. The primary study aim was to identify factors predictive for local control.
MATERIALS AND METHODS: In total, 311 pulmonary tumours in 254 patients were treated between 2008 and 2011 with SABR using 48-60 Gy in four to five fractions. Local, regional and distant failure data were collected prospectively, whereas other end points were collected retrospectively. Potential clinical and dosimetric predictors of local control were evaluated using univariate and multivariate analyses.
RESULTS: Of the 311 tumours, 240 were NSCLC and 71 were other histologies. The 2 year local control rate was 96% in stage I NSCLC, 76% in colorectal cancer (CRC) metastases and 91% in non-lung/non-CRC metastases. Predictors of better local control on multivariate analysis were non-CRC tumours and a larger proportion of the planning target volume (PTV) receiving ≥100% of the prescribed dose (higher PTV V100). Among the 45 CRC metastases, a higher PTV V100 and previous chemotherapy predicted for better local control.
CONCLUSIONS: Lung SABR of 48-60 Gy/four to five fractions resulted in high local control rates for all tumours except CRC metastases. Covering more of the PTV with the prescription dose (a higher PTV V100) also resulted in superior local control.
Resumo:
In this paper we investigate the received signal characteristics of a mobile chest-worn transmitter at 5.8 GHz within a high multipath indoor environment. The off-body channel measurements considered both the co- and cross-polarized received signal for both line-of-sight (LOS) and non-LOS (NLOS) conditions. A straightforward channel model based upon the estimated path loss, a lognormal slow fading component and Ricean small-scale fading contribution is developed and used to perform simulations which allow the generation of first order received signal power characteristics.
Resumo:
A unique property of body area networks (BANs) is the mobility of the network as the user moves freely around. This mobility represents a significant challenge for BANs, since, in order to operate efficiently, they need to be able to adapt to the changing propagation environment. A method is presented that allows BAN nodes to classify the current operating environment in terms of multipath conditions, based on received signal strength indicator values during normal packet transmissions. A controlled set of measurements was carried out to study the effect different environments inflict on on-body link signal strength in a 2.45 GHz BAN. The analysis shows that, by using two statistical parameters, gathered over a period of one second, BAN nodes can successfully classify the operating environment for over 90% of the time.
Resumo:
It has previously been shown that human body shadowing can have a considerable impact on body-to-body communications channels in low multipath environments. Signal degradation directly attributable to shadowing when one user's body obstructs the main line of sight can be as great as 40 dB. When both people's bodies obstruct the direct line of sight path, the communications link can be lost altogether even at very short distances of a few metres. In this paper, using front and back positioned antennas, we investigate the utility of a simple selection combination diversity combining scheme with the aim of mitigating human body shadowing in outdoor body-to-body communications channels at 2.45 GHz. Early results from this work are extremely promising, indicating substantial diversity gains, as great as 29 dB, may be achieved in a number of everyday scenarios likely to be encountered in body-to-body networking. © 2012 IEEE.
Resumo:
The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional hexagonal crystals is calculated by using a real-time first-principles approach based on Green's function theory [Attaccalite et al., Phys. Rev. B: Condens. Matter Mater. Phys. 2013 88, 235113]. This approach allows one to go beyond the independent particle description used in standard first-principles nonlinear optics calculations by including quasiparticle corrections (by means of the GW approximation), crystal local field effects and excitonic effects. Our results show that the SHG spectra obtained using the latter approach differ significantly from their independent particle counterparts. In particular they show strong excitonic resonances at which the SHG intensity is about two times stronger than within the independent particle approximation. All the systems studied (whose stabilities have been predicted theoretically) are transparent and at the same time exhibit a remarkable SHG intensity in the range of frequencies at which Ti:sapphire and Nd:YAG lasers operate; thus they can be of interest for nanoscale nonlinear frequency conversion devices. Specifically the SHG intensity at 800 nm (1.55 eV) ranges from about 40-80 pm V(-1) in ZnO and GaN to 0.6 nm V(-1) in SiC. The latter value in particular is 1 order of magnitude larger than values in standard nonlinear crystals.
Resumo:
This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz using the κ-μ / gamma composite fading model. Realistic measurements have been conducted considering four individual scenarios namely line of sight (LOS) and non-LOS (NLOS) walking, rotation and random movements within an indoor laboratory environment. It is shown that the κ-μ / gamma composite fading model provides a better fit to the fading observed in off-body communications channels compared to the conventional Nakagami-m and Rician fading models.
Resumo:
This paper investigates the potential improvement in signal reliability for outdoor short-range off-body communications channels at 868 MHz using the macro-diversity offered by multiple co-located base stations. In this study, ten identical hypothetical base stations were positioned equidistantly around the perimeter of a rectangle of length 6.67 m and width 3.3 m. A body worn node was placed on the central chest region of an adult male. Five scenarios, each considering different user trajectories, were then analyzed to test the efficacy of using macro-diversity when the desired link is subject to shadowing caused by the human body. A number of selection combining based macro-diversity configurations consisting of four and then ten base stations were considered. It was found that using a macro-diversity system consisting of four base stations (or equivalently signal branches), a maximum diversity gain of 22.5 dB could be obtained while implementing a 10-base station setup this figure could be improved to 25.2 dB.
Resumo:
In this paper we investigate the effects of vehicular traffic on body-to-body (B2B) communications channels in an urban environment at 2.45 GHz. In particular, the impact of differing vehicle types passing in the vicinity of a B2B link are investigated for different body orientations relative to one another at the side of a busy urban street. Initial findings suggest that the average disturbance in a B2B channel can last for 2 seconds and depending on the vehicle size, fades in excess of 40 dB can occur. The body orientations are shown to be a significant factor on the effects of vehicular traffic on the B2B channel.
Resumo:
Channel randomness can be exploited to generate secret keys. However, to ensure secrecy, it is necessary that the channel response of any eavesdropping party remain sufficiently de-correlated with that of the legitimate users'. In this paper, we investigate whether such de-correlation occurs for a body area network (BAN) operating in an indoor environment at 2.45 GHz. The hypothetical BAN configuration consisted of two legitimate transceivers, one situated on the user's left wrist and the other on the user's waist. The eavesdroppers were positioned in either a co-located or distributed manner in the area surrounding the BAN user. Using the simultaneous channel response measured at the legitimate BAN nodes and the eavesdropper positions for stationary and mobile scenarios, we analyze the localized correlation coefficient. This allows us to determine if it is possible to generate secret keys in the presence of multiple eavesdroppers in an indoor environment. Our experimental results show that although channel reciprocity was observed for both the stationary and the mobile scenarios, a higher de-correlation between the legitimate users' channels was observed for the stationary case. This indicates that mobile scenarios are better suited for secret key generation.
Resumo:
A system of software and hardware that combines signal processing and contact microphones using normally inaudible body sounds, including heartbeat/pulse, respiration and internal sounds from the vocal tract that can be heard internally by the performer but not externally by others, to drive resonant filters. Performance at SARC Sonic Lab, Belfast, 19 Feb 2015 in collaboration with Birgit Ulher.