294 resultados para Ultrasonic testing.
Resumo:
Background: Clostridium difficile (C. difficile) is a leading cause of infectious diarrhoea in hospitals. Sending faecal samples for testing expedites diagnosis and appropriate treatment. Clinical suspicion of C. difficile based on patient history, signs and symptoms is the basis for sampling. Sending faecal samples from patients with diarrhoea ‘just in case’ the patient has C. difficile may be an indication of poor clinical management.
Aim: To evaluate the effectiveness of an intervention by an Infection Prevention and Control Team (IPCT) in reducing inappropriate faecal samples sent for C. difficile testing.
Method: An audit of numbers of faecal samples sent before and after a decision-making algorithm was introduced. The number of samples received in the laboratory was retrospectively counted for 12-week periods before and after an algorithm was introduced.
Findings: There was a statistically significant reduction in the mean number of faecal samples sent post the algorithm. Results were compared to a similar intervention carried out in 2009 in which the same message was delivered by a memorandum. In 2009 the memorandum had no effect on the overall number of weekly samples being sent.
Conclusion: An algorithm intervention had an effect on the number of faecal samples being sent for C. difficile testing and thus contributed to the effective use of the laboratory service.
Resumo:
Seafloor massive sulfide (SMS) mining will likely occur at hydrothermal systems in the near future. Alongside their mineral wealth, SMS deposits also have considerable biological value. Active SMS deposits host endemic hydrothermal vent communities, whilst inactive deposits support communities of deep water corals and other suspension feeders. Mining activities are expected to remove all large organisms and suitable habitat in the immediate area, making vent endemic organisms particularly at risk from habitat loss and localised extinction. As part of environmental management strategies designed to mitigate the effects of mining, areas of seabed need to be protected to preserve biodiversity that is lost at the mine site and to preserve communities that support connectivity among populations of vent animals in the surrounding region. These "set-aside" areas need to be biologically similar to the mine site and be suitably connected, mostly by transport of larvae, to neighbouring sites to ensure exchange of genetic material among remaining populations. Establishing suitable set-asides can be a formidable task for environmental managers, however the application of genetic approaches can aid set-aside identification, suitability assessment and monitoring. There are many genetic tools available, including analysis of mitochondrial DNA (mtDNA) sequences (e.g. COI or other suitable mtDNA genes) and appropriate nuclear DNA markers (e.g. microsatellites, single nucleotide polymorphisms), environmental DNA (eDNA) techniques and microbial metagenomics. When used in concert with traditional biological survey techniques, these tools can help to identify species, assess the genetic connectivity among populations and assess the diversity of communities. How these techniques can be applied to set-aside decision making is discussed and recommendations are made for the genetic characteristics of set-aside sites. A checklist for environmental regulators forms a guide to aid decision making on the suitability of set-aside design and assessment using genetic tools. This non-technical primer document represents the views of participants in the VentBase 2014 workshop.
Helping Students Learn and Monitor Progress: expectations and challenges of formative online testing
Resumo:
Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide were determined as a function of the alkyl chain length on the cation from 1-propyl- to 1-hexyl- from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally the speed of sound, density and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e. relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.
Resumo:
This paper demonstrates the unparalleled value of full scale data which has been acquired from ocean trials of Aquamarine Power’s Oyster 800 Wave Energy Converter (WEC) at the European Marine Energy Centre (EMEC), Orkney, Scotland.
High quality prototype and wave data were simultaneously recorded in over 750 distinct sea states (comprising different wave height, wave period and tidal height combinations) and include periods of operation where the hydraulic Power Take-Off (PTO) system was both pressurised (damped operation) and de-pressurised (undamped operation).
A detailed model-prototype correlation procedure is presented where the full scale prototype behaviour is compared to predictions from both experimental and numerical modelling techniques via a high temporal resolution wave-by-wave reconstruction. This unquestionably provides the definitive verification of the capabilities of such research techniques and facilitates a robust and meaningful uncertainty analysis to be performed on their outputs.
The importance of a good data capture methodology, both in terms of handling and accuracy is also presented. The techniques and procedures implemented by Aquamarine Power for real-time data management are discussed, including lessons learned on the instrumentation and infrastructure required to collect high-value data.
Resumo:
An overview of research on the development of the hybrid test method is presented. The maturity of the hybrid test method is mapped in order to provide context to individual research in the overall development of the test method. In the pseudo dynamic (PsD) test method, the equations of motion are solved using a time stepping numerical integration technique with the inertia and damping being numerically modelled whilst restoring force is physically measured over an extended timescale. Developments in continuous PsD testing led to the real-time hybrid test method and geographically distributed hybrid tests. A key aspect to the efficiency of hybrid testing is the substructuring technique where the critical structural subassemblies that are fundamental to the overall response of the structure are physically tested whilst the remainder of the structure whose response can be more easily predicted is numerically modelled. Much of the early research focused on developing the accuracy and efficiency of the test method, whereas more recently the method has matured to a level where the test method is applied purely as a dynamic testing technique. Developments in numerical integration methods, substructuring, experimental error reduction, delay compensation and speed of testing have led to a test method now in use as full-scale real-time dynamic testing method that is reliable, accurate, efficient and cost effective.